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ABSTRACT

Developers must often diagnose anomalies in programs they
only have a partial knowledge of. As a result, they must
simultaneously reverse engineer parts of the system they
are unfamiliar with while interpreting dynamic observation
data (performance profiling traces, error-propagation chan-
nels, memory leaks), a task particularly difficult. To sup-
port developers in this kind of comprehension task, filtering
and aggregation have long been suggested as key enabling
strategies. Unfortunately, traditional approaches typically
only provide a uniform level of aggregation, thus limiting
the ability of developers to construct context-dependent rep-
resentations of a program’s execution. In this paper, we pro-
pose a localised approach to navigate and analyse the CPU
usage of little-known programs and libraries. Our method
exploits the structural information present in profiling call
trees to selectively raise or lower the local abstraction level
of the performance data. We explain the formalism under-
pinning our approach, describe a prototype, and present a
preliminary user study that shows our tool has the potential
to complement more traditional navigation approaches.

Categories and Subject Descriptors

B.8.2 [Performance and reliability]: Performance Anal-
ysis and Design Aids

General Terms

Performance, Human Factors
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program comprehension, performance profiling

1. INTRODUCTION

Modern software applications increasing rely on a com-
plex ecosystem of third party components that considerably
hinder the diagnosis of anomalies in program behaviour (in-
stability, low performance, memory leaks). Modern software
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applications are typically made of parts developed by dis-
tinct teams in independent organisations, are continuously
expanded and corrected, and resemble a living organism,
constantly evolving in a loosely controlled manner.

This constant evolution and somewhat organically grown
structures mean that non-functional properties (performance,
security, dependability) are often poorly understood. To
face this challenge, and improve the overall quality of their
products, developers need tools and techniques that help
them understand the non-functional behaviour of their plat-
forms. Typical non-functional properties are unfortunately
systemic properties that require both a global and detailed
understanding of a system’s operations. Large software prod-
ucts are collaboratively developed; they integrate numer-
ous third party components; and as a result no developer
can claim to thoroughly understand them. Because cur-
rent non-functional analysis techniques typically require a
good prior understanding of their target system, develop-
ers are in need of powerful filtering and aggregation tech-
niques, two strategies that have long been recognised as key
enablers for program comprehension. Unfortunately, tradi-
tional approaches typically only provide a uniform level of
aggregation, thus limiting the ability of developers to con-
struct context-dependent representations of a program’s ex-
ecution. In this paper, we focus more particularly on the
analysis of dynamic CPU usage traces, and propose a lo-
calised approach to interactively navigate the CPU usage of
unfamiliar programs and libraries.

Our method exploits the structural information present
in profiling call trees to selectively raise or lower the local
abstraction level of the performance data. Our approach
builds on prior works that combine static and dynamic soft-
ware data [16, 12, 6, 5, 21], and exploits the structural infor-
mation contained in dynamic profiling traces to reduce the
amount of information presented to users while retaining a
systemic overview of performance phenomena.

In this paper, we present the rationale for our approach
(Section 2), explain its underlying intuition (Section 3.1),
provide a graph-based formalisation of its workings (Sec-
tion 3.2), describe an exploratory prototype (Section 3.3),
and report on a small user study to assess its benefits and
challenges (Section 5). Finally we present related work (Sec-
tion 6) and conclude (Section 7).

2. PROBLEM STATEMENT

As development cycles shorten, complex applications are
increasingly developed using off-the-shelf components [13].
Although the functional behaviour of these components are



TRACE 1:

1lib3.Signal.travel (ToyProgram. java:60)
1lib2.Nerve.transmit(ToyProgram. java:50)
1ib2.Muscle.contract (ToyProgram. java:40)
1lib2.Lung.inhale(ToyProgram. java:30)
1libl.Mammal.inhale(ToyProgram. java:20)
libl.Whale.breath(ToyProgram. java:10)

TRACE 2:

1ib3.Blood. flow(ToyProgram. java:80)
1ib3.Pressure. foo(ToyProgram. java:70)
1ib2.Muscle.contract (ToyProgram. java:40)
1ib2.Lung.inhale(ToyProgram. java:30)
1libl.Mammal.inhale(ToyProgram. java:20)
libl.Whale.breath(ToyProgram. java: 1)

TRACE 3:

1ib3.Signal.travel (ToyProgram. java:60)
1lib2.Nerve.transmit(ToyProgram. java:50)
1ib2.Muscle.stop(ToyProgram. java:45)
1ib2.Lung.inhale(ToyProgram. java:30)
1libl.Mammal.inhale(ToyProgram. java:20)
libl.Whale.breath(ToyProgram. java: 1)

CPU SAMPLES BEGIN (total = 6) Tue Apr 6 17:20:40 2010
rank self accum count trace method

1 50.00% 50.00% 3 1 1ib3.Signal.travel

2 33.33% 83.33% 2 3 1ib3.Signal.travel

3 16.67% 100.00% 1 2 1ib3.Blood. flow
CPU SAMPLES END

Figure 1: A toy-example of hprof output file

sometimes reasonably-well documented, their non-functional
properties (reliability, performance, robustness) are much
harder to gauge. These non-functional properties often re-
sult from emergent run-time interactions between a system’s
components, and are thus hard to predict before the sys-
tem’s deployment. CPU consumption is a good representa-
tive example of this situation: a system might be executing
slowly because a given component A is being used by an-
other component B under an adverse workload that A was
not designed to handle.

Analysing and diagnosing such situations is not trivial. It
often involves a combination of black-box and grey-box pro-
filing, the second approach providing finer-grained details
of the software’s behaviour. Among grey-box techniques,
sample-based profiling is particularly popular due to its lim-
ited level of interference. A sampled-based profiling tool pe-
riodically interrupts an application and captures the state
of the currently active thread. This state may be limited to
the currently executing function, or might include additional
context information, from the direct caller (as in gprof [7]),
up to the full call path from the thread’s starting point (e.g.
hprof [14] or STAT from the Paradyn project [4]). When
full call paths are captured, the result is a set of weighted
stack traces that reflect the application’s CPU usage. A par-
ticularly active part of the code will appear proportionally
often in the stack traces, thus allowing developer to track
hot-spots. The traces themselves document the sequence of
nested calls that leads to some code being executed, thus
helping with diagnosis.

Figure 1 shows an example of hprof output for an hy-
pothetical biology simulation program. Three traces have
been observed: Trace 1 three times, Trace 3 twice, and
Trace 2 once. Using a simple prefix-tree (trie) algorithm,
this weighted set of traces can be transformed in a weighted
call tree. (Figure 2. Weights are indicated in square brack-
ets, and reflected in the node sizes.) From the profiling tree
we can infer that 1ib2.Muscle.contract() uses twice as many
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Figure 2: The weighted profiling tree.
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Figure 3: Branch navigation applied to Fig. 2

CPU cycles (x 4 samples) as lib2.Muscle.stops() (X 2), es-
sentially because lib2.Muscle.contract() uses lib3 twice as
much as lib2.Muscle.stops().

On non-trivial systems, however, this profiling tree can
become quite large, even on limited experiments. For in-
stance a simple distributed scenario on the Grid Computing
platform Globus [19] can result in a profiling tree with more
than 1000 nodes. To help developers navigate such large
trees, industrial analysis tools (e.g. HPjmeter [3] or Eclipse
TPTP [1]) typically offer an interface such as the one of
Figures 3 and 4 that allows developers to explore a profiling
tree by expanding or collapsing tree branches.

Although useful, these approaches largely ignore concomi-
tant issues of program comprehension that arise in larger
and more complex cases such as that of Figure 4, showing a
Globus execution. They assume developers have a reason-
able command of the programs they analyse and can provide
the structural and behavioural models that are needed to
make sense of the data. Unfortunately, in larger and more
complex systems, individual developers often only have a
partial knowledge of the various parts of the software and
must therefore simultaneously reverse engineer the parts of
the system they are unfamiliar with while diagnosing perfor-
mance issues. To support this kind of comprehension task,
filtering and aggregation have long been recognised as key
enabling strategies to analyse software data. Unfortunately,
traditional approaches typically only provide a uniform level
of aggregation, in which one code entities (a method, class or
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Figure 4: Branch navigation applied to a larger soft-
ware (Globus ws-core)

package) appear at the same level of abstraction throughout
the representation. This is problematic for highly context-
dependent performance data, and limits the ability of de-
velopers to construct context-dependent representations of
a program’s execution. To address this challenge, we pro-
pose a localised approach to navigate and analyse the CPU
usage of little-known programs and libraries. Our method
exploits the structural information present in profiling call
trees to selectively raise or lower the local abstraction level
of the performance data.

Our approach builds on prior software analysis techniques
that combine static and dynamic data [16, 12, 6, 5, 21]. It
differs from these works, however, in that it is interactive
(users do not need to provide a prior specification of com-
paction rules as in BLOOM or AVID [16, 21]), and localised
(users can apply different levels of compaction to the same
program elements in different parts of the profiling tree, con-
trarily for instance to the work of Cornelissen et al [5]).

3. APPROACH
3.1 Intuition

The traditional approach for navigating a profiling tree
such as that of Figure 2 consists in selectively hiding or show-
ing subtrees. The represented information remains however
at the same level of abstraction: each node corresponds to
the invocation a method along a particular call path starting
at the tree’s root.

In this paper we propose to explore an alternative ap-
proach by varying the level of abstractions at which different
parts of the profiling tree are represented. As in previous
related works [16, 12, 6, 5], our premise naturally unfolds
from an intuitive understanding of classes and objects as
interactive entities: When a method lib2.Nerve.transmit()
calls another method lib3.Signal.travel(), we can understand
the same interaction as the class lib2.Nerve calling the class
lib3.Signal (Figure 5). Exploiting the organisation in pack-
ages used by Java classes, we can push this analogy fur-
ther, by considering the same call to be an invocation from
the package Iib2 to lib3 (Figure 6). Because Java pack-
ages in concrete applications are usually nested, this process
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Figure 5: Getting rid of methods: the profiling tree
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lib1 [x6]
4

lib2 [x6]
1

lib3 [x6]

Figure 6: Getting rid of classes: only showing pack-
ages

is recursive, and a call from java.security.AccessController-
.doPrivileged() to org.apache.axis.utils. ClassUtils.forName()
can then be seen as a call from java to org.apache.

The two previous examples of Figure 7 and 6 are however
uniformly compacted. All nodes are represented at the same
level of abstraction: that of classes for Figure 7 and top-level
package for Figure 6. Developers might however wish to
zoom-in by lowering the abstraction of one particular part
of the graph, while maintaining the rest of the graph in its
compacted form. Figure 7 shows such an example, where
the classes of 1ib2 are shown (Lung, Muscle, Nerve), but the
other packages (libl and lib3) kept fully compacted.

Our technique further extends this approach by allowing
users to select local levels of abstraction that only apply in
one part of the profiling tree. As a result, the same program
element might be expanded at different granularity levels in
different parts of the graph. For instance, Figure 8 shows
how the right-hand side Iib3 package is locally expanded,
while the same left-hand side package remains compacted.

3.2 Formalisation

Two elements are required to construct the kind of locally
compacted profiling trees we have just sketched:

e The ability to specify the local compaction level that
should apply for a particular package in a particular
area of the profiling tree.
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Figure 7: Expanding lib2 from Figure 6
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Figure 8: Local expansion of lib3 (from Fig. 7)

e A localised merging mechanism that captures the in-
terplay of both structural and behaviour closeness to
determine the final abstraction level of each program
execution points.

To address the first point, we associate each node with a
granularity level, an integer that represents how much of the
node’s full name should be represented in the rendered tree.
For instance, Figure 9 shows the value of granularity levels
(in circles) leading to the compaction of Iib2 in a single node
(Figure 10). The granularity level of a node determines its
compacted name (essentially a prefix of its full name), by
indicating how many elements of the node’s name should be
retained in the final graph. For instance in Figure 9, node
lib2.Lung.inhale() has a granularity level of 1, meaning that
it should merge with nodes in its vicinity (essentially de-
scendants or siblings) that also belong to 1ib2 (represented
by the ‘lib2’ set of nodes on Figure 9). The resulting com-
pacted node will then be represented by its top-level package
1ib2 (in bold) in the compacted tree (Figure 10). All nodes
outside Iib2 have a granularity level of ‘3’, meaning they
should be represented with 3 name elements (in this case
package, class and method).

Compacted names create a ‘take-over’ relationship between
nodes (shown with red arrows on Figure 9, and noted > in the
following) which indicates how nodes should merge in the re-
sulting graph. The goal of this relationship is to capture the
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Figure 9: Local granularity levels and compaction
process

interplay of both structural and behavioural closeness to im-
plement a localised merging mechanism. Structural because
only nodes that belong to a common enclosing package (e.g.
lib2 in Figure 9) should merge together. Behavioural be-
cause this merging should only happen between nodes that
lay in each other’s wvicinity in the call-tree.

The concept of wicinity is meant to encompass children
and siblings, but needs to be defined somewhat more broadly
to capture the situation where two nodes are brought close
together because their parents have merged. For instance
in Figure 9, two leaf nodes refer to the method lib3.Signal.-
travel(). In the fully expanded tree of Figure 9, these two
nodes are neither siblings, nor descendants of one another,
and are therefore represented as independent nodes. How-
ever, once the nodes belonging to lib2 are merged into one
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L

lib2 [x6]

lib3.Signal.travel() [5] lib3.Pressure.foo() [X1]
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Figure 10: Partial compaction of lib2 resulting from
Fig. 9



compacted node (upper enclosing shape in Figure 9), both
lib3.Signal.travel() nodes become ‘siblings’ referring to the
same program element and should therefore also be merged
(with an appropriately updated weight, as explained below).

More formally, we say a node A takes over anode B (A>B)
if and only if one of the following conditions holds:

e A and B are the same node (the relation is reflective)
A=B (1)

e the compacted name of A is a prefix of the compacted
name of B (this includes the case when both com-
pacted names are equal) and

— either the parent of B is taken over by A, i.e.
A > parent(B) (2)
— or the parents of both A and B are taken over by
the same node, i.e.
3D : D parent(A) A D> parent(B)  (3)
where parent(X) denotes the parent of node X.

Note that Condition (2) encompasses the case where A is
B’s parent, since A> A (by Condition (1)). Similarly Con-
dition (3) encompasses the case where A and B are siblings,
by selecting D = parent(A) = parent(B).

For instance, in Figure 9, lib2.Lung.inhale() (whose com-
pacted name is ‘lib2’, and hence should be represented as
a ‘lib2’ node) takes over both lib2.Muscle.contract() and
lib2.Muscle.stop() because of rules (1) and (2). Ilib2.Lung.-
inhale() also takes over the two lib2.Nerve.transmit() nodes
because of rule (2). Finally the two lib3.Signal.travel() nodes
take each other over symmetrically because of rule (3).

The nodes of the resulting compacted tree are the con-
nected components of the take-over relationship (represented
as free-form shapes in Figure 9). The weight of each com-
pacted node is that of the highest node being merged in
the original tree, if there is only one such node (e.g. lib2-
.Jung.inhale() in Figure 9), or the sums of the weights of the
highest nodes if there are several (such as the two leaf nodes
lib3.Signal.travel() in our example).

3.3 Prototype

3.3.1 User interactions

Using the previous mechanism, two actions can be offered
on each node of a compacted tree: localised expansion and
compaction. Essentially, compacting a node will lower the
granularity level of all the nodes in the original profiling tree
that correspond to the selected compacted node. An expan-
sion is the reverse: the granularity is raised. In both cases a
new merged tree is computed, and a dynamic animation is
used to highlight how nodes either merge or separate.

To limit the amount of change provoked by compaction
and expansion, we prevent users from lowering the granular-
ity level of a compacted node below that of its parent (since
by construction a child cannot take over its parent). We
also forbid situations in which take-over relationships would
occur across more than one level of package hierarchy: e.g.
a node with compacted name lib2 cannot take over a node
with compacted name lib2.Muscle.contract(). The granular-
ity level of the second node would first need to be lowered
to lib2.Muscle. In both cases, the offending action is simply
blocked, and an explanatory message displayed to the user.
Both limitations are design decisions rather than inherent
constraints of the compaction mechanism.

3.3.2  Implementation

Our prototype, called ProfVis, implements the above com-
paction and expansion features using the graphical program-
ming framework Processing [2] (Figure 11). Although the lo-
calised structural compaction we propose can be combined
with more traditional tree navigation features, our prototype
limits interaction to structural expansion and compaction to
facilitate the study of this particular navigation approach.
The available actions offered to a user are pan (mouse drag),
zoom-in (’+’), zoom-out (’—’), package-expand a node (left
click), package-compact a node (right click), global expan-
sion by one level (right arrow), and global compaction by
one level (left arrow).

The CPU utilisation of each node is represented by its
area, and structural closeness by colours: nodes belonging
to the same enclosing class or package are shown in similar
hues. We also use a simple semi-circular graph layout: nodes
and their children are recursively allocated angular sectors
in the 2D plane and positioned on a radial layout.

A screenshot of the prototype is shown on Figure 11 when
running on the same Globus profiling data as Figure 4, and
the layout of the fully compacted Globus tree is shown in
Figure 12. This fully compacted graph only contains 89
nodes, which compares favourably against the 1341 nodes in
the original profiling tree.

*org.apache.axis

- orq&l-nhus

ecurity =
.netSocketinputStrean.

java.lang

org.apache axis
12.28% (14 samples)

Figure 11: The prototype applied to a Globus trace

4. EVALUATION

4.1 Overview and rationale

To explore the quantitative and qualitative issues involved
in the use of our prototype (ProfVis), we ran a small scale
user study with four users. Each user was asked to com-
plete the same comprehension task on four different pro-
grams (two small and two larger ones) with ProfVis, and
with the textual navigation tool we showed in the introduc-
tion (called TreeTable), to act as a comparison point.

We chose TreeTable as our baseline rather than a more
advanced technique (e.g. the spiral visualisation of BLOOM
[16]) for two main reasons: We wanted to visualise the same
underlying profiling tree with roughly the same degree of
interaction freedom to facilitate comparisons, and we wanted
to provide our test users with a semi-textual interface widely
used in the industry [3, 1], which they might be more familiar
with.



Figure 12: The fully compacted graph produced by
our tool for the Globus trace (89 nodes)

TreeTable differs from the ProfVis prototype in 4 orthog-
onal dimensions:

e TreeTable is mainly textual (with the exception of the
coloured bar at each line’s end) while ProfVis contains
many graphical cues (node size and colour, pointed
arrows).

e In TreeTable, the colour and size of the bars are used
to convey the same information (CPU usage), while in
ProfVis the colour conveys package (structural) prox-
imity (sibling or child parent packages uses similar
hues), while the size of the nodes (more exactly their
area) represent CPU usage.

e TreeTable is tabular and laid out against one main
vertical dimension, which users can easily scroll. (In
that respect it is almost one dimensional.) This helps
present each frame’s information in parallel to that
of its neighbours, and facilitates comparison between
each frame’s CPU usage. By contrast ProfVis relies on
a 2-dimensional layout, where nodes are positioned in
a semi-circular (fan) structure.

e TreeTable uses branch navigation to hide or expose
parts of the tree. Each node is either collapsed or ex-
panded: a collapsed node hides its children (nested
invocations), while an expanded node shows them. By
contrast, ProfVis always shows all branches of the un-
derlying tree, and uses localised package-based com-
paction / expansion as its main navigation mechanism.

These design dimensions are largely orthogonal, in that

they could be arbitrarily combined. For instance: the package-

compaction navigation that is one of the defining features of
ProfVis could be used in a one-dimensional textual tool; the
colour representing CPU usage could be used in a graphical
tool such a ProfVis; finally ProfVis could have used a plain
one-dimensional layout, similar to that of TreeTable.

4.2 Experimental protocol

We first trained each test-subject during roughly half an
hour on each tool. During this training session, test sub-

LoC | classes | methods | prof. tree
BubbleSort 59 2 7 100
Simulation 140 5 16 71
OPSBrowser | 13624 172 1002 1059
ws-core-3.9.4 | 42477 432 2550 1341

Table 1: Some statistics regarding the target pro-
grams of our study

jects (also called ‘users’ in the following) were showed a pre-
recorded presentation on sample-based profiling, the mean-
ing of an inclusive profiling call-tree, and the general princi-
ples of both the TreeTable and ProfVis tools. The subjects
were then asked to complete simple understanding tasks
with both tools on the toy example of Section 3, and on
a larger profiling trace (obtained during a run of ProfVis it-
self). During the training period, we answered any question
the users might have on either tools (e.g. TreeTable and
ProfVis), the target programs, or performance analysis.

We then moved to the study proper which consisted in
analysing the profiling traces of four target programs, two
small and two larger ones, using TreeTable for the first two,
and ProfVis for the last two. Table 1 shows some static met-
rics of all four programs (collected with LOCC [11]) along
the size of profiling call graph considered.

BubbleSort and Simulation are two toy programs specifi-
cally developed for this study which respectively implement
a bubble sort of 1,500 words, and a simple physical simu-
lation of 2000 balls connected by springs. OPSBrowser is
a call-graph construction and manipulation engine that is
part of the CosmOpen reverse engineering tool [20]. Finally
ws-core-3.9.4 is the Web-Service core of the grid computing
middleware Globus in its version 3.9.4. The version 3.9.x
of Globus was the first to integrate web-service technolo-
gies, and is a good representative of the type of systems we
mentioned in the introduction: a large and complex soft-
ware assembled in a relatively short time (a few months) by
reusing a number of pre-existing components (notably the
Apache axis JAX-RPC engine). Some of its performance
issues have been discussed in [19], which provides a good
baseline to assess our test-users’ understanding.

The comprehension task given to test users was broken
down in four steps: (i) to explain how the program was or-
ganised; (ii) to indicate which part(s) of the program (method,
class, or package) could be modified to improve its perfor-
mance; (iii) to create a snapshot (with the tool) that illus-
trates (i) and (ii); (iv) to sketch a diagram of the program’s
organisation; and finally (v) to rate from 0 to 10 the level to
which they thought they understood the target program to
be able to improve its performance (Perceived Understand-
ing).

A first group of 2 users were asked to perform the above
task first with TreeTable on BubbleSort and Globus (in this
order), then with ProfVis on Simulation and OPSBrowser
(also in this order). The distribution of target programs was
crossed over for the second group of 2 users, with TreeTable
first applied to Simulation and OPSBrowser, followed by
ProfVis on BubbleSort and Globus. To increase the intelli-
gibility of identifiers, and emulate the abilities of developers
to look up additional information in a real-life situation, we
provided each user with a list of spelt-out acronyms (e.g.
PKCS7, SAX, WSRF) and library names (Xerces, Clay-



moresystems) for each target program. We asked each user
to verbalise their activities, and recorded each session, both
as a video, and a stream of interaction events (node expan-
sion, contraction, etc.). We performed 16 sessions in total:
four per users, 8 per tool.

We finally assessed the understanding of performance is-
sues reached by each user on each task by comparing their
recorded verbalisation, snapshot and diagram to a set of key
expected observations derived from the traces of each target
program. We counted how many of these observations they
had found and normalised their score to 10 (Assessed Un-
derstanding). The number of expected observations was rel-
atively low (between 4 and 6 observations per program), and
high-level. For instance, on the Globus trace, we expected
users to make five observations: (i) that the CPU’s time
is roughly split between a bootstrap and runtime phase; (ii)
that the bootstrap creates a container; (iii) that the runtime
phase executes the remote service; (iv) that the bootstrap
was slow because of XML processing; and (v) the service
execution because of security issues.

S. RESULTS ANALYSIS

Our analysis focuses of two aspects: we first contrast
the various understanding measures obtained in the experi-
ments, and then discuss some of the interaction patterns we
observed in the use of each tool. The following analysis is of
course constrained by the small size and nature of our user
study: rather than a full-fledged controlled experiment, our
aim here is more to highlight potential issues and trends in
the use of localised structural compaction for performance
analysis.

5.1 Understanding
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Figure 13: Contrasting perceived and assessed un-
derstanding

Figure 13 contrasts each user’s perceived understanding
(for each task) with their assessed understanding. Our goal
in asking users to assess their understanding was both to
elicit a measure that eschewed any value judgement on our
part, and reflected each user’s subjective experience while
avoiding a potential social desirability bias towards ProfVis.
As Figure 13 shows, the two measures are largely unrelated:
some users thought they did well in some tasks, while miss-
ing most of the key points and thus scoring low on the as-

sessed measure, while others did the reverse. Some pat-
terns do seem to appear though: Users are best aligned with
their assessed performance when analysing small programs
with TreeTable (hollow rhombus); they tend to underesti-
mate their understanding of large programs with ProfVis
(solid squares); and tend to overestimate their understand-
ing of both small programs with ProfVis (hollow squares)
and large programs with TreeTable (solid rhombus).

One possible explanation is to observe that TreeTable only
displays as many nodes as the user has expanded. As a
result users may easily perceive a large trace graph as smaller
than it really is, and from there assume they have reached a
reasonable understanding when they have missed some key
parts of a program’s execution. By contrast, ProfVis forces
users to confront a program’s full call-tree from the onset,
even if in a highly compacted form. For instance, the fully
compacted version of the Globus traces contains 89 nodes
when ProfVis starts (Figure 11), while TreeTable only shows
two lines for the same trace file.
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Figure 14: Cumulative distributions of understand-
ing measures: small programs vs. larger ones

As a complement to Figure 13, Figure 14 shows the cumu-
lative distribution of perceived (top) and assessed (bottom)
understanding measures for small (BubbleSort and Simula-
tion) and large programs (OPSBrowser and Globus). Fig-
ure 14 shows the same information for TreeTable and ProfVis.
For instance on the top chart of Figure 13, 5 sessions yielded
a perceived understanding of 8 or more for small programs
(solid dots). Figure 14 shows that although users felt they
understood less of larger programs, we did not perceive a
noticeable difference in our assessment. This probably sim-
ply reflects that our key expected observations (Section 4.2)
were adapted to each program’s size and complexity, thus
ironing out some of effects of size on the measure.
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Figure 15: Cumulative distributions of understand-
ing measures: TreeTable vs. ProfVis

Of key interest for the present work, Figure 15 indicates a
slight advantage for ProfVis over TreeTable in terms of both
assessed and perceived understanding.

5.2 Interaction patterns and strategies

For each task session, we recorded the depth (in the dis-
played tree) at which users compacted or expanded nodes.
Plots of this depth of interaction against time is shown for
TreeTable (top) and ProfVis (bottom) in Figure 16 for large
programs (OPSBrowser and Globus) and in Figure 17 for
small programs (BubbleSort and Simulation). Figure 16
clearly shows that on large programs, most users adopt a
depth-first strategy with TreeTable, rapidly moving deep
into the call tree along a single execution branch (gener-
ally that of the most weighted child), and only occasionally
backtracking through large jumps back to the top of the tree.
By contrast users go far less deep with ProfVis, and tend (for
the majority at least) to keep interacting at the same depth
over long periods of time (appearing as ‘plateaus’ on the Fig-
ure). A similar trend can be discerned for small programs
(Figure 17), although not as clearly.

This pattern might be explained by the difference or pre-
sentation in the two tools. The layout of TreeTable natu-
rally encourages users to go deep first: the next child with
the highest share of CPU usage is always the closest and lies
in a predictable position. By contrast, the relative location
of nodes in ProfVis evolves in a two-dimensional plane with
each new interaction. As a result node positions are far less
predictable, possibly deterring users from rapidly moving
away from their current position.

5.3 Threats to validity

Besides the inherent difficulty in defining and measuring
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Figure 16: Interaction patterns on large programs
(ProfVis and TreeTable)

understanding, and the small size of our study, our measure-
ment of the understanding reached by our users is influenced
by a large number of factors besides the particular visualisa-
tion tool being used. For instance, the semantic information
born by identifiers is obviously critical to users in our ex-
periments, since our test subjects did not know the target
programs, nor had access to any source code. Identifiers
might be more or less descriptive, and might speak to one
subject more than to another. How they are interpreted is
also obviously influenced by a user’s prior knowledge: Most
of our users declared a high proficiency in Java, but a gener-
ally low expertise in the other involved technologies (XML,
Globus), and in the analysis of sample-based profiling traces.

The influence of prior knowledge and training goes how-
ever beyond the mere interpretation of identifiers. A min-
imal grasp of the meaning of profiling trees is for instance
critical: profiling trees collapse concurrent activities in one
single call-tree, and do not contain any information on the
ordering or frequency of individual invocations. At least
one of our test subjects misunderstood these limitations,
and tried to reconstruct the exact sequence of calls each
program was going through, a particularly hard, if not im-
possible task on the sole basis of the available information.

6. RELATED WORK

Performance analysis, both automated, and semi-manual,
is a thriving area of research (e.g. [9, 23, 17]). For space rea-
sons, we focus in the following on approaches that combine
both static and structural elements and are generally geared
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Figure 17: Interaction patterns on small programs
(ProfVis and TreeTable)

toward comprehension and reverse engineering rather than
fully automated diagnosis.

Numerous works have investigated the fusion of both struc-
tural and dynamic data to support program comprehension
tasks [18, 12, 21, 16, 5, 10, 8]. The key idea is similar to ours:
By selectively folding or hiding recurring patterns (in our
case invocations belonging to the same enclosing package),
these approaches decrease the complexity of the data to be
represented, while retaining enough information to capture
the program’s internal logic. Jerding et al. for instance pro-
posed a pattern extraction technique that collapses identical
subtrees in the original call-tree, and identifies duplicated
subtrees generated by iteration and recursion [12]. This
pattern-induced collapsing of subtrees has also been used
by Pauw et al. in JinSight to help locate memory leaks in
Java programs. Their technique groups objects according
to their class and the other objects they refer to [6]. By
compacting reference relationships into patterns, they help
users encompass complex object graphs, while maintaining
enough information to discriminate objects accordingly to
their situation of referencing.

AVID (Architectural VIzualisation of Dynamics) presented
by Murphy et al. [21] reduces the complexity of dynamic
behavioural data by constructing an architectural view of a
running object-oriented program. The tool records method
invocations, object allocations and de-allocations. To visu-
alise an execution, the user must first provide a mapping of
low-level entities (objects) to higher-level groupings (collec-
tions) that makes sense for the task at hand. This grouping
occurs off-line and is static. For each collection, the tool

counts particular events (such as the number of objects al-
located) and represents them as histograms attached to the
collection. The tool also draws an edge whenever an object
in a particular collection invoked an object in another one,
and labels this edge by the number of invocations between
the two collections. The current state of the call stack at
the point of visualisation is represented as a path running
through the collections that are traversed by the program’s
thread (which the authors call an hyperarc).

Shimba [18] is a reverse-engineering environment for Java
that supports the parallel exploration of both static and dy-
namic views of a program. Shimba allows users to correlate
structural and behavioural data by filtering one type of data
using the other (a technique termed model slicing). Shimba
offers advanced analysis techniques to reduce the size of dy-
namic data: (i) it can synthesise statecharts from sequence
diagrams; (ii) it can also detect behavioural patterns in se-
quence diagrams and replace them by a repetition construct.

Similar to Shimba, BLOOM [16] is an integrated system
for software visualisation, covering data collection, analy-
sis, and visualisation of both static and dynamic informa-
tion. One of its key features is a visual language that al-
lows users to specify what should be represented and how.
BLOOM works on event traces that contain method invoca-
tions, exits, and memory management events (allocation, de-
allocation), and encompasses performance analysis. Among
the analysis provided, BLOOM can construct direct acyclic
graphs from the trace data in which identical call-paths are
collapsed together. Closely related to the work presented
in this paper is BLOOM’s package encoding analysis that
allows users to specify how particular library calls should
be merged together. Rather than being interactively deter-
mined by the user, however, the merging policy is defined in
an external specification written in XML.

A number of recent works have proposed to use interac-
tive structural compaction to help developers analyse depen-
dencies between program entities [15, 5]. DA4Java [15] and
Creole! for instance use nested nodes to represent structural
relationships between program entities, and allow users to
vary the level of abstraction at which nested nodes are repre-
sented, as we do. Cornelissen et al [5] use a similar technique
in the context of circular bundle views, based on a tech-
nique first proposed by Holten [10]. Circular bundle views
arrange a program’s elements (methods, classess, packages)
in a circle, and represent the call relationships among these
elements (e.g. A is calling B during a particular observation
window) as bundled edges in the centre of the circle. Hier-
archical relationships between program elements (package P
encloses class A) are denoted by using concentrical circles
for each hierarchical level, and insuring the angular span of
P encloses that of A.

As in our work, Creole, DA4Java, and circular bundle
views allow users to collapse elements into their enclosing
parent (i.e. their enclosing class or enclosing package), in
which case edges are correspondingly updated. Contrarily
from our work, however, these approaches are limited to
interaction diagrams where elements are only represented
once, in contrast to call trees, where the same method might
appear in multiple locations. As a result, they are unable to
realised localised compactions, and simply apply a uniform
level of compaction to the same element across their respec-

"http:/ /www.thechiselgroup.org/creole



tive representation. By contract, the approach we propose
allows the same element to be represented at different levels
of abstraction within the same graph, a key advantage for
behavioural representations, in which the same structural
elements might appear in different unrelated contexts.
Structural collapsing is more generally related to the no-
tion of graph roll-up, discussed for instance by Wattenberg
[22]. A graph roll-up aggregates all nodes sharing a par-
ticular predicate, and merges the corresponding edges while
updating both node and edge meta-data. In contrast to our
technique, however, graph roll-ups are uniform, whereas in
our proposed approach aggregation propagates locally in the
profiling tree to deliver a localised merging mechanism.

7. CONCLUSION

We have presented a novel navigation approach to help
developers explore complex dynamic profiling information
by selectively raising or lowering the abstraction level of
the parts of the program’s execution they are visualising.
Our approach exploits the structural information found in
profiling traces. We have realised a prototype implement-
ing this navigation technique, and have presented an early
evaluation campaign that hints at the potential benefits of
our approach when compared against the current industrial
practice in profiling tree navigation.

We purposefully implemented a limited prototype to ex-
plore the benefits of our compaction technique. However,
because our technique essentially produces an alternative,
more compact tree, it can be combined with almost any
additional tree navigation and visualisation approach, such
a branch-base collapsing, or advanced layout and panning
techniques. This integration is indeed an aspect we would
like to study further in the future.
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