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Abstract

Third party software is now increasingly used in

systems with high dependability requirements. This

evolution of system development raises new challenges, in

particular regarding the implementation of fault-

tolerance. As systems are often built of black-box

components, some crucial aspects of their behavior

regarding replication cannot be handled. This is also true

to some extent for open-source components as mastering

their internal behavior is sometimes very tricky (e.g. OS

and ORBs). During the last decade reflection has

emerged as a very fruitful paradigm for the disciplined

management of non-functional aspects, among which

fault-tolerance. In this paper we discuss how to apply

reflection to multi-layer systems for implementing fault-

tolerance in an independent and principled manner. We

analyze the connections between the underlying

assumptions of fault-tolerance strategies and the different

layers of a system. Based on this multi-layer analysis we

show how the requirements of a family of replication

algorithms can be addressed on a concrete architecture,

resulting in what we name Multi-Layer Reflection.

1. Introduction

Flexibility, reuse, and adaptation are becoming key

aspects of today's large computer systems (satellite

systems, transport, automotive), and explain the increasing

use of component-based approaches (including COTS).

This trend raises two challenges when considering the

dependability of the resulting systems: How can we build

dependable systems from components that don't

specifically target dependability concerns? What are the

dependability figures of the resulting systems? We focus

in this paper on the first question, and more particularly on

the implementation of fault-tolerance into systems made of

third party software components. Fault-tolerance is very

difficult to achieve without a minimal understanding and

control of the internal structure and behavior of the

considered systems. This implies intrusion within system

components, which is very problematic. For this reason,

integrators are looking for sound and principled

approaches that help them separate functional

development from fault-tolerance concerns, within large

projects, over long life cycles.

Computational Reflection [11], an architectural

paradigm that appeared in the late eighties, and related

technologies such as aspect oriented programming, appear

as very promising approaches to tackle this issue. Using

reflection to implement fault-tolerance into multi-

component systems induces, however, several sub-

problems. Reflective architectures are centered on a key

element, their meta-model, that ensures the separation of

concerns between the "base" system (here the system

resulting from component integration) and the

mechanisms (here fault-tolerance) that are added to the

base system. To be effective, this meta-model must take

into account both the multi-component nature of the

system and the requirements of fault-tolerance that it

should help implement. In this paper, we address this dual

issue and propose a methodology to help designing meta-

models that specifically target the implementation of fault-

tolerance into systems made of third party components.

The paper is organized as follows. Section 2 briefly

recalls essential notions regarding computational reflection

and introduces the steps of our approach. Section 3

proposes a requirement analysis of a set of well-known

replication strategies from a reflective perspective. Based

on a small example, Section 4 shows how this analysis can

be applied to a concrete system architecture made of

several components. This discussion leads us to the notion

of Multi-Layer Reflection (MLR). Section 5  further

develops the practical use of this notion by presenting, on

a concrete architecture (CORBA and POSIX based), how

the requirements obtained in Section 3 lead to the precise

specification of a meta-model that is both optimized for

fault-tolerance and the considered system structure.

2. Computational Reflection

A reflective system is basically structured around a

representation of itself —or meta-model — that is causally

connected to the real system [11]. This approach divides

the system into two parts: a base-level where normal

computation takes place, and a meta-level where the

system computes about itself (meta-computation or meta-

level software). (See Figure 1)
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The meta-model is structured around notions that are

major (runtime) elements of the base level, and common

to all applications sharing the same programming model.

The systems we are interested in are made of third-party

components that are most often organized in a layered

architecture: OS kernel, system libraries, compilers, virtual

machines, middleware, etc. These layers introduce

different abstraction levels that each provide different sets

of elements from which applications can be built to run on

top of these levels. As a consequence, different meta-

models corresponding to different abstraction levels of the

same system can be defined. For instance, the meta-model

of an object-oriented application considered at the

language level would typically contain entities and events

such as “Class ”, “Method ”,  “Instanciation”,

“Invocation”, or “Attribute”, but would probably not

contain anything about OS-level issues such as memory

paging, or task scheduling.

Metamodel
(supported by 

reflective mechanisms)

Metalevel 
(software components for non-functional requirements)

Base-level
(application, middleware and operating system components)

Reification
Introspection,

Intercession

Figure 1. Organization of a Reflective System

Meta-models provide an abstract view of the base-level

system that enables the implementation of non-functional

mechanisms at the meta-level (notion of separation of

concerns). The information contained in the meta-model

determines the range of non-functional mechanisms that

can be implement at the meta-level. In our case, an ideal

meta-model should provide all the reflective features that

are required to implement correctly and efficiently fault-

tolerance. To this aim, we propose the following steps

when designing a fault-tolerance oriented meta-model:

1. Establish the set of reflective features required by

fault-tolerance

2. Map the requirements of Step 1 onto the different

layers of the considered system

In the next section, we investigate from a reflective

perspective the requirements of a set of fault-tolerance

mechanisms (Step 1). In section 4, we address Step 2.

3. A reflective View of Replication Strategies

Defining the complete meta-model that allows the

implementation of all known fault-tolerance strategies is

very ambitious. For illustration purposes, we limit our

analysis to well known replication mechanisms namely

passive replication (e.g. primary-backup strategy), semi-

active replication (or leader-follower strategy) and active

replication (e.g. TMR strategy)1. This section discusses the

set of reflective features that are required to implement

these strategies. We only address the requirements (i.e. the

"What i s  needed?") of the different replication strategies

from a logical viewpoint and express them in reflective

terms. From a conceptual viewpoint, this exercise is very

interesting as it collects the assumptions (e.g. interception

of client requests, identification of non-deterministic

decisions, state access, etc.) fault-tolerance designers have

in mind when they propose a given algorithm. These

assumptions usually become implicit, as the designer dives

into the details of the algorithm, fault assumptions or

performance aspects.  Those conceptual and

implementation assumptions are, however, key aspects to

decide on the practicality of the proposed algorithms, and

have often a crucial impact on the implementation. If the

information is easy to obtain, then fine, if not, then the

proposed algorithm cannot be implemented or can only be

implemented with some restrictions, which often make the

resulting implementation questionable. In this section, we

try to collect all (most of) the conceptual and

implementation assumptions made by the designers of the

three replication strategies we investigate, and we

factorize them into a meta-model.

3.1. System Model

We assume a conventional client / server model where

servers process client requests and return the results of this

processing. Servers encapsulate data (their state) and code

(describing the services they offer to clients). When a

service request is received, an "execution point" appears

within the server. This execution point travels through the

code, processes the received request, possibly modifies the

server's state, and possibly produces a reply that is

returned to the client. In this section, we don't make any

assumption about the nature of servers, but we assume that

server replicas are "distributed" so that they fail

independently. Our notion of server is very similar to

those of "replication entities, whatever they are" or

"distributed processes" commonly found in works on

distributed algorithms.

3.2. Considered Replication Strategies

We consider three replication mechanisms (passive,

semi-active, and active replication techniques) according

to the criteria identified above. We focus here on

implementation requirements rather than on fault

assumptions. To simplify the analysis, we also assume that

requests are delivered to server replicas using an atomic

multicast protocol. Table 1 summarizes the key well-

known characteristics of the three replication strategies.

                                                            
1 Please see [14] for more details about these strategies.
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Passive replication: the checkpointed information must

ensure that the backup execution after a primary crash

remains consistent with the previous execution as

perceived by the rest of the system before the crash.

Semi-active replication  requires that all non-

deterministic decisions made by the leader are intercepted

and forwarded to the followers.

Active replication (i.e. TMR) can only be considered

for deterministic servers. If this holds, non-deterministic

decisions do not need to transit between the replicas.

3.3. Control and Observability Requirements

For each considered replication strategy, we distinguish

three control and observation facets: communication,

execution, and state. At each level, we consider the entities

that are concerned by the replication strategy, the actions

of these entities that must be observed and controlled, the

motivation for this, and finally the available means to

satisfy these requirements. We do not consider the cloning

of new replicas, as cloning involves operations (request

synchronization, state transfer) that are very similar to

those found in passive replication. The result of our

analysis is presented in Table 2.

Our analysis is limited here to the requirements of the

three considered replication strategies provided the

assumptions of Table 1 are guaranteed. For instance, semi-

active replication requires a mechanism that ensures

"determinism" across replicas (e.g. notification messages).

However, mechanisms have been proposed to enforce

replica determinism with no communication between the

replicas, and could be used for active replication [2, 7, 12].

3.4. The resulting Meta-Model

The essential reflective features given in Table 3 result

from the aggregation of the requirements presented in

Table 2. The corresponding meta-model results from the

interactions between the base-level (application), and the

meta-level (fault-tolerance). These interactions (see

Figure 1) are classified as follows:

1 .  Reification: initiated by the base level to provide

information to the meta-level.

2 .  Introspection: initiated by the meta-level to obtain

information from the base-level.

3. Behavioral intercession: initiated by the meta-level to

modify the behavior of the base-level.

Passive replication Entities Action Motivation Means

Communication requests / replies send / receive Synchronization between replicas. Interception

Execution execution points activation / progress /

termination

Capture/ restore on-going requests in

concurrent servers.

Interception

Platform instrumentation

State internal data,

platform data

change on internal

data, interactions with

the local platform

Consistent state restoration, i.e.

transparent recovery from the client

point of view.

Memory dump

Serialization

Interactions journals

Semi-active replication Entities Actions Motivation Means

Communication idem as passive idem as passive control over leader / follower

notifications

idem as passive

Execution idem as passive +

non-deterministic

decision points

idem as passive + non-

deterministic operations

control over non-deterministic

decisions

idem as passive

State idem as passive idem as passive control over platform interactions

with non-deterministic results

idem as passive

Active replication Entities Actions Motivation Means

Communication idem as passive reply validation & propagation idem as passive

Execution Not needed

State Not needed (cloning not considered)

Table 2. Control and Observability Requirements for the considered Replications Strategies

Strategy Fault assumptions Tolerated

faults

Replica

Determinism

Resource

overhead

Communication

overhead

Recovery overhead

Passive Fail-silent servers Crash faults Not required 1 active server High (checkpoints) Medium (re-execute)

Semi-active Fail-silent servers Crash faults Not required 2 active servers Low (no checkpoints) Low (switch)

Active Fail-uncontrolled Value faults Required 3 active servers Low (no checkpoints) Low (null)

Table 1. Assumptions and Key Characteristics of Well-Known Replication Strategies
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4. Structural intercession: initiated by the meta-level to

modify the state of the base-level.

Table 3 does not contain all the possible features one may

encounter in generic reflective systems [5, 10, 18].

However, although limited, these reflective features

supports a meta-model for the replication strategies

discussed in § 3 . 3 . Interestingly, according to the

motivations of each reflective feature found in Table 3, the

proposed facets (Communication, Execution, and State)

can be related to two different concerns of replication

strategies. The communication facet enables the

coordination of the different replicas and is the least

intrusive. It can be implemented using wrapping

techniques for instance. The execution and state facets

relate to the control of consistency across replicas. Those

facets are the most intrusive, as they deal with internal

non-determinism and state information. The key question

is now: How can this meta-model be implemented on a

real platform?

4. Introducing Multi-Layer Reflection

As previously mentioned in Section 2, a real platform

encompasses several abstraction levels that correspond to

the different components of the concrete system. Several

reflective architectures have been proposed for fault-

tolerant systems [1, 6, 13], and have proved the interest of

reflection in this context. All these reflective architectures,

however, use reflective capabilities from a single

abstraction level. Using a small example, we show in this

section that the meta-model obtained in Section 3 cannot

be implemented at a single level without threatening the

interest of reflection itself. This example illustrates the

motivation for MLR (Multi-Layer Reflection concepts

previously introduced in [17]).

Consider the semi-active replication of a concurrent

server implemented on top of an Object Request Broker

(ORB), used in thread pool mode. Most ORB

implementations offer such a concurrency model by

spawning a fixed number of threads at initialization, and

putting them in a "waiting state". When a request arrives,

the ORB forwards the request to one of the threads of the

pool, and this thread starts processing the request. The

initial size of the thread pool (say p) determines the

highest number of active concurrent requests. How a

particular thread is assigned a particular request is ORB-

implementation dependent, and remains totally hidden (i.e.

non-deterministic) to the application2. In the same way, the

ORB doesn't necessarily follow the order in which it

receives requests from lower communication layers;

requests may be delivered to the application objects in any

order, even if they are received at lower layers through an

atomic multicast protocol. In summary, the role of the

ORB is two-fold: (i) dispatching of at most p requests

among received requests to the application, and (ii)

allocation of the selected requests to available pool-threads

(at-most p). In our example, we further assume that the

application itself is deterministic, i.e. that the results

returned by the different requests only depend on the order

in which requests are processed by application objects.

Consider now three fault-tolerance programmers who

must add a replication mechanism to this kind of server.

•  The first one has no access to any meta-information

regarding the executive layers (black-box case).

•  The second can control all OS-level thread related

operations (scheduling, synchronization, etc.) through a

dedicated OS-level meta-model (mono-level reflection).

•  The third one can both inspect and control the OS

and the ORB through a multi-layer meta-model.

4.1. The Black-Box Case

This first programmer has only access to the application

level, all underlying executive layers being black-boxes.

This approach gives him no control whatsoever on the

order in which requests are delivered to the application

objects. If a thread-pool-ORB with a pool size of two

                                                            
2 The CORBA standard does not recommend any specific multi-threaded

object implementation.

Reflective features Communication Execution State

Reification RequestReception

RequestSending

ReplySending

ReplyReception

ExecutionPointStart

ExecutionPointEnd

ExecutionPointReach

NonDeterministicFlowChange

NonDeterministicPlatformCall

Introspection getRequestContent

getReplyContent

getExecutionPoint getServerState

getPlatformState

Behavioral Intercession doSend

doReceive

createExecutionPoint

setExecutionPoint

forceResultOfFlowChange

ForceResultOfPlatformCall

Structural Intercession piggyBackDataOnMsg setServerState

setPlatformSate

Table 3. Towards an Aggregate Meta-Model for Replication Strategies
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threads simultaneously receives three requests, only two

out of the three requests will be non-deterministically

delivered to the application (the third one being queued).

Consider three requests R, S, and T delivered in this order

to the replicated ORBs. Assume the ORB of the leader

dispatches R and S to the two threads of its pool, and the

leader chooses to serve R first and then S. If the ORB of

the follower dispatches S and T to the application instead,

the follower will be unable to follow the leader's choice.

Although visible at the application level, this decision is

internal to the ORB and so cannot be controlled in this

case. This problem (called PB1) relates to ORB internal

messages shuffling, which destroys any total order

provided by an underlying atomic multicast protocol.

A possible solution to this problem is to serialize

incoming requests at the communication level before they

are delivered to the ORB (but it also eliminates the

benefits of the thread-pool mode [12]).

4.2. The Mono-Layer Reflection Case

Our second fault-tolerance programmer has access to

the OS level only, the ORB remaining a back-box. In this

case, low level communication primitives, thread

scheduling and synchronization can be controlled. Forcing

all replicated OS to schedule threads and to allocate

mutexes in exactly the same way, ensures that requests are

processed in the same order by all object replicas. This

approach inhibits ORB message shuffling and solves

problem PB1 under our assumptions (deterministic

application). This is however quite complex in a multi-

layer architecture and not optimal. We call this "non-

optimality" problem PB2.

The reason is that, forcing threads to process requests in

exactly the same order at the OS level enables object

replicas to reach identical states, but introduces useless

constraints. Indeed, different activation profiles can reach

the same state, even when threads are not run exactly in

the same order. An example is given in Figure 2.

Consider two different dispatchings of two successive

requests (R1 and R2) on a pool containing two threads (T1

and T2). Request R1 interacts with the application state

variable X (potentially shared), whereas request R2

interacts with the state variable Y. Request processing is

represented by dashed bars and interactions by dotted

areas limited by double arrows.

In Case 1, both requests are handled by T1. In Case 2,

request R1 is processed by T1, request R2 is processed by

T2. Clearly, having full visibility of the thread behavior

leads to understand that the final states after both

computation profiles are identical. However, as OS level

instrumentation restricts the visibility (and thus semantic

understanding) to threads and mutex actions alone, the

fault-tolerance programmer cannot easily reach this

conclusion. From his point of view, as only one thread T1

is used, the result of processing R1 may impact the

processing of R2. In other words, as a potential causal

dependency exists between the state of Y after R2

(Y_after_R2_by_T1_after_R1), and the state of X

before R1 (X_init), the application may reach two

different states (X,Y) depending on the dispatching

decision. Figure 3-a traces the FT-programmer view of the

computation as perceived at the OS level, and shows that

two possible major states are perceived after processing

R2 (as shown in Figure 3-b).

Request R1
Thread T1

Thread T2

Request R2
State Variable X

State Variable Y

T1_after_R1_R2

T1_after_R1

X_after_R1_by_T1_init

Y_after_R2_by_T1_after_R1

State

Possible causal dependency

Case 1: T1 handles the two requests R1 and R2

Request R1

Request R2

T2_after_R2

T1_after_R1X_after_R1_by_T1_init

Y_after_R2_by_T2_init

Thread T1

Thread T2

State Variable X

State Variable Y

Case 2: T1 handles R1, T2 handles R2

Figure 2: Request vs Thread using a Thread Pool

In practice, one of these two computation profiles will

be imposed to both leader and follower. So, the non-

determinism problem PB1 is solved at the expense of blind

forcing of thread scheduling at both replicas (as in [7]).

However, in a complex multi-layer architecture controlling

all individual OS actions induces unacceptable overheads

as middleware layers intensively use threading and mutex

locks. The non-optimality of this solution is due to the lack

of visibility and semantics of the computation in the ORB.
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4.3. The Multi-Layer Reflection Case

Consider now the third fault-tolerance programmer,

who can control both the OS and the middleware, running

in thread pool mode in our example. From the particular

semantics of a thread-pool, he knows that the thread states

T2_init, and T1_after_R1  are equivalent, as pool

threads do not keep memory of previously processed

requests. In other words, threads in the pool always

process requests from a pre-defined initial state. No

information regarding the processing of R1 can propagate

to R2 through thread T1. The potential causal dependency

shown on Figure 2 does not exist3. So, taking into account

the semantics of concurrency models at the middleware

level allows him to discard the “request-to-thread

allocation” as a source of non-determinism. There is no

need for the ORB running the leader replica to force its

follower to allocate requests to exactly the same threads.

The distinction made in Figure 3-b between the states

after_R2-1 and after_R2-2 is useless. after_R2-1

and after_R2-2 are grouped into the single state

after_R2, as shown in Figure 3-c.

Our third programmer can thus avoid problem PB2. In

addition, having access to the internal decision of the

ORB, i.e. delivery and retrieval to/from the pool, solves

problem PB1 in a more elegant and efficient manner. In

§5, we describe how this can be done in practice.

This small example illustrates how combining

information obtained from several levels can help

discarding sources of non-determinism as non-relevant for

handling replication of multi-threaded objects.

                                                            
3 In our example the R1 and R2 do no share state variables, and the

resulting state does not depend on their interleaving. However, the causal

dependency through shared variables could be handled by enforcing

access to shared variables X and Y in the same order, using mutex-

control approaches as in [2].

The complementary nature of high and low level

reflection and lessons learnt from reflective systems

development [15], prompted us to introduce the notion of

multi-layer reflection and its attached terminology [17]. In

brief, this notion focuses on the interdependencies

between individual system layers to provide an end-to-end

meta-model that is explicitly tailored for fault-tolerance.

Notions of mapping and projection support the analysis of

interlevel coupling from a reflective perspective. A

mapping describes the various possible representations of

a given entity at a given abstraction level i by entities

available at a (lower) abstraction level i-1. A projection is

the transitive closure of mapping relations that maps a top-

level entity to lower level entities (useful for state

handling). Reverse projections map low-level entities to

higher level ones (useful for error confinement).

5. A Multi-Layer Reflection: Case Study

In this section, we present on a concrete architecture,

how the MLR solution (cf. §4.3) can be implemented in

practice, and propose for the chosen case study an explicit

meta-model that corresponds to the requirements of Table

3. From the reverse engineering of a simple application

running on an ORB, we discuss step-by-step the two facets

of the consistency problem of replication strategies: the

control of non-determinism and the state transfer.

5.1. Case-Study Description

We consider a system composed of a POSIX-compliant

OS, a CORBA-compliant middleware, and a simple

application that implements the following IDL interface:

interface Hello {
  unsigned long say_hello();
};

R1 by T1

R2 by T1

R1 by T2

R2 by T2

after_R1

after_R2-2

after_R2-1

init

...

T1_after_R1

T2_after_R2

X_after_R1_by_T1_init

Y_after_R2_by_T2_init

T1_after_R1

T2_init

X_after_R1_by_T1_init

Y_init

T1_after_R1_R2

T2_init

X_after_R1_by_T1_init

Y_after_R2_by_T1_after_R1

T1_init

T2_init

X_init

Y_init

R1

init

after_R1

R2

after_R2-1 after_R2-2

R2

R1

init

after_R1

after_R2

R2

a- Detailed states (OS view) b- Major of the states (OS view) c- States (MLR view)

Figure 3: Different Views of the Computation
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On receiving a request "say_hello()", the application

increments an internal counter (originally set to 0), and

returns the new value to the client. A possible C++

implementation of this application can be as follows.

CORBA::ULong Hello_impl::say_hello() {
  CORBA::ULong result ;
  pthread_mutex_lock(&_object_lock);
    _count++ ;
    result = _count ;
    cout << "Hello World!: "
         << _count << endl;
  pthread_mutex_unlock(&_object_lock);
  return result ;
}

The counter _count  represents the application's

internal state. As this counter is returned to the client, the

order in which requests are scheduled (indirectly through

the mutex Hello_impl::_object_lock) determines

which client sees which result.

In order to replicate this very simple application, we need

to identify the reflective features of Table 3: control over

execution points and determinism for active and semi-

active replication, and the state transfer for passive

replication and cloning. To reach this goal, Figure 4 shows

the reverse engineering of a concrete CORBA

implementation running our example. This figure shows

simplified traces of the different active threads within the

Orbacus CORBA implementation when processing the

say_hello() request in pool mode. Orbacus (version

4.1.1) was used in thread_pool mode with four threads

in its pool (p = 4), on Linux (version 2.4.18), leading in

this case to 8 active threads (4 additional service threads!).

On the figure, four threads are shown, with numbers 1,

3, 4 and 8. 1 is the main thread, 3 the thread that accepts

socket connections (i.e. it executes the accept system

call). Thread 4 is one of the pool threads (the other pool

threads correspond to the numbers 5, 6, 7– not shown).

Thread 8 is the receiver thread associated to the invoking

client. The thread number 2, not shown, corresponds to the

manager thread of the current Linux pthread

implementation. This manager thread is totally hidden to

the user of the pthread library, and is used internally to

carry out all thread management actions (blocking,

signaling, suspension, creation, and destruction). This

manager thread is an example of implementation choices

that remain totally invisible to higher system levels

implemented on top of it.

In this figure, we can distinguish four main phases:

1. First, the ORB is initialized (calls numbered from (0)

to (5)). The thread pool is created (calls number (2)

and (3)) and the accepting thread 3 is spawn.

2. In the second phase, a connection request is received

from a remote client, and a receiver thread is launched

(call number (6)): several connections, several

receiver threads. Connection management realized

within the ORB is transparent to the application level.

3. In a third phase, the request is received by the receiver

thread (call (8)), and travels up to the application code

(call (14) to say_hello()). The transfer of the

request from Thread 8 (receiver) to Thread 4 (thread

pool member) occurs through the a shared request

queue (Thread 8 invokes ThreadPool::add(..),

which awakes Thread 4 and have it return from

ThreadPool::get(..).).

4 .  Thread 4 returns from the application and calls a

sequence of object methods (15 to 18) to return the

result of the request execution (call (19)) to the client.

5.2. Request Execution Related Meta-Model

Definition of the Meta-Model

In order to handle the non-determinism and control the

execution, we focus on the part of the meta-model of

Table 3 related to request execution. We model here the

lifecycle of a request as follows: (i) a request is received

by the ORB, (ii) delivered to the application and finally

(iii) results are sent back to the client. This lifecycle could

be refined, but other aspects have not been identified as

relevant to the fault-tolerance mechanisms discussed in

Section 3. Based on this lifecycle, we must be able to

observe the following classes of reified events (see Figure

4) for a detailed control of request execution through the

ORB:

BeginOfRequestReception
EndOfRequestReception
RequestBeforeApplication
RequestAfterApplication
BeginOfRequestResultSend
EndOfRequestResultSend
RequestContentionPoint

The processing of a request reifies exactly one instance

of each of these event classes, except for the last one:

RequestContentionPoints correspond to the several

decision points, in the ORB and the application, that

determine the ordering of request processing.

The Meta-Model applied to the Example

From the reverse engineering4 analysis in Figure 4, one

can easily identify the first six "Request related events"

mentioned previously. BeginOfRequestReception is

mapped to the call to recv (number (8) in the figure);

EndOfRequestReception to the return of the same call.

RequestBeforeApplication is mapped to the call to

say_hello(); RequestAfterApplication to the

return of the same call; BeginOfRequestResultSend

                                                            
4  A special reverse engineering tool was developed on purpose to obtain

this graph by analyzing the runtime execution of an open-source ORB,

here Orbacus.
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and EndOfRequestResultSend are mapped to the call

and the return of send respectively (number (19).

From the analysis of the control and data path followed

by a request, we identify two places corresponding to

RequestContentionPoints, namely RCP1 and RPC2:

•  RCP1: A lock protects the object ThreadPool and

serializes accesses to the request queue by both receiver-

threads and pool-threads in ThreadPool::add() and

ThreadPool::get().

•  RCP2: A second contention point in the application

code, which uses the this->_object_lock mutex.

Quite interestingly, controlling those two contention

points appears to be necessary and sufficient to control the

non-determinism introduced by the request dispatching

within the ORB. According to the above meta-

information, non-deterministic decisions can be identified

and propagated to a replica.

•  RCP1 controls the order in which the pool-threads

extract requests from the request queue within the ORB,

• RCP2 enables controlling in which order requests are

processed within the application objects.

This is a nice example of MLR as RCP1 belongs to the

ORB and RCP2 to the application. Both contention points

are needed to control non-determinism and solve PB1 and

PB2. RCP1 only cannot ensure the order in which requests

are processed by the application object. RCP2 only cannot

ensure that the same set of requests is extracted from the

queue. Both have an impact on the results returned the

clients (i.e. the value of the counter _count).

5.3. State Related Meta-Model

Passive replication requires a state-related meta-model

to be able to capture and restore a consistent server state

(platform and application). This can be done in two steps:

first restoring the ORB/OS state, then the application state

in a consistent way. The request life cycle presented

previously is used to restore the ORB state.

Indeed, once we control how requests and their

associated threads interleave within the ORB, we can

restore an ORB state by simply "re-injecting" requests at

the communication interface. This can be seen as an

adaptation of log-based checkpointing techniques [16].

Actually, the aim is not to restore the entire ORB state but

the relevant state driving the execution of our application.

This is the key benefit of our approach. This implies subtle

re-execution of the ORB parts related to the processing of

on-going requests thanks to meta-models information. The

objective of this re-execution is to reach a state that is

equivalent (not necessarily identical) for the application.

From the point of view of the ORB, requests can be

pending in the ORB for execution, in progress at the

application level (limited by the pool size) or pending in

the ORB for termination. The following ORB level

intercession actions are thus required:

• (i) Insertion of pending requests for execution,

• (ii) Insertion of requests in progress in the pool,

• (iii) Insertion of pending requests for termination.

ThreadPool

Upcall

(10) 8:add

a

Hello_impl

POA_Hello

(14) 4:say_hello
b

recv send

POA_impl

(2) 1:new
ThreadPool

a

ThreadPoolDispatcher

(11) 4:_OB_dispatch

b

ORB_impl

(1) 1:new
POA_impl

a

(3) 1:Create
Thread 4

(4) 4:get

a

main

(0) 1:-

GIOPServerWorkerThreaded

(5) 1:Create
Thread 3

b
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b
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d
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(9) 8:invoke

c
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b
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a
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c
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ReceiverThread
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C++ class / C function
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class "A" by thread "8",

registered as the "10th"
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A

(10) 8:add

A

(2) 1:new A
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A
spawning  of a new
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OS Kernel
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Figure 4: Request Dispatching using a Thread Pool in Orbacus
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In order to perform these operations in a portable and

disciplined manner, intercession facilities are required (see

ORB meta-interface in Figure 5). All requests are inserted

using the InjectRequestAtCommLevel ORB meta-

interface intercession function. As we control

RequestContentionPoints reified events, we can

block the execution of pending requests for execution (i).

For requests pending for termination (iii), we bypass the

execution of the request by forcing the continuation of the

execution within the ORB by means of the ORB meta-

interface function SkipCallToApplication. To trigger

this bypass operation, we intercept the execution flow

before it reaches the application, thanks to the reification

of event RequestBeforeApplication (cf. Section 5.2).

The management of requests in progress at the

application level (ii) implies complementary state recovery

actions at both the OS and the application layers:

• Update thread related data structures (OS);

• Update application state variables (Application);

• Resume execution of application objects (OS)

Similar meta-interface and reification facilities are thus

required at the OS level. Numerous techniques can be used

to restore thread execution stacks, for instance [8] that is

portable, or [3, 4] for platform specific solutions

(respectively on Java and Linux/i386).

The update of application state variables (here _count)

can be done in many ways, including reflective approaches

(already proposed as in [9]) that are very portable.

5.4. Towards Implementation of the Meta-Models

Figure 5 summarizes in a Java-like format the meta-

interface we have obtained. This meta-interface is quite

generic, and can be applied on any ORB that follows the

assumptions we made on this example. Its design

synthesizes the requirement analysis of the fault-tolerance

mechanisms, and the Multi-layer analysis we proposed.

Implementation using Orbacus and Linux is in progress

today.

6. Conclusion and Future Work

The rapid evolution of system platforms and the

variability of their configurations and surrounding

environments induces an increasing need for adaptive

systems at both functional and non functional levels. In the

particular case of fault-tolerance, many attractive

algorithms have been proposed to generically provide

fault-tolerance to a wide range of system classes. These

algorithms are based, however, on the availability of

specific observation and control features in the underlying

system platform that are often difficult to obtain in

practice. The difficulty arises from the multi-layer

structure of the considered platforms, and the increasing

use of off-the-shelf software components. These control

and observability features are, however, essential to the

correctness of these algorithms and cannot be ignored.

class Request ;
class Thread ;
class StackChunk ;
class ReifiedEvent ;
class RequestLifeCycleEvent extends ReifiedEvent {

public Request reifiedRequest ;
public Thread  reifyingThread ;

}
class BeginOfRequestReception extends RequestLifeCycleEvent ;
class EndOfRequestReception extends RequestLifeCycleEvent ;
class RequestBeforeApplication extends RequestLifeCycleEvent ;
class RequestAfterApplication extends RequestLifeCycleEvent ;
class BeginOfRequestResultSend extends RequestLifeCycleEvent ;
class EndOfRequestResultSend extends RequestLifeCycleEvent ;
class RequestContentionPoints extends RequestLifeCycleEvent ;

class IntercessionCommand ;
class ContinueExecution extends IntercessionCommand ;
class SkipCallToApplication extends IntercessionCommand ;

interface MetaLevel {
IntercessionCommand reifyEventToMetaSynchronous(ReifiedEvent e);

}
interface BaseLevel {

State captureApplicationState ();
void  restoreApplicationState (State s);
StackChunk captureApplicationStack (Thread t);
void       restoreApplicationStack (Thread t, StackChunk stack) ;
void  InjectRequestAtCommuncationLevel(Request r);

}

Figure 5: The resulting meta-interface
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In this paper we proposed an approach that provides

early answers to the above problems by using Reflection

to make platform assumptions easier to address. After

analyzing several conventional replication techniques, we

factorized the requirements of these techniques into a

high-level meta-model. We illustrated on a case study how

this meta-model can be mapped to a given system platform

by analyzing the structural and behavioral elements across

several abstraction levels. Multi-Layer Reflection

aggregates the meta-model of several abstraction levels in

order to select the most appropriate location to obtain

relevant meta-information.

In many works, people often tend to ignore

implementation details raising the argument of standard

interfaces. As far as fault-tolerant computing is concerned,

this kind of argument does not hold and we showed how

Multi-Layer Reflection could overcome this problem.

However, implementing MLR, although possible on open-

source executive layers, is very complex. The reason is

that, even when complying with standard interfaces, the

implementation of middleware and operating systems is

difficult to master for the development of fault-tolerance

strategies. The implementation of cross-cutting concerns

definitely calls for appropriate implementation

frameworks, and to some extent, a new generation of

components, namely reflective components. This is one of

our long term objectives for a better mastering and

adaptation of fault-tolerance in complex component-based

systems.
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