
GossipKit: A Framework of Gossip Protocol Family

Shen Lin, François Taı̈ani, Gordon S. Blair
Computing Department

Lancaster University

Lancaster LA1 4YR, UK

(s.lin6, f.taiani, gordon)@comp.lancs.ac.uk

Abstract—A large number of gossip protocols have been developed in

the last few years to address a wide range of functionalities. So far,

however, very few software frameworks have been proposed to ease

the development and deployment of these gossip protocols. To address

this issue, this paper presents GossipKit, an event-driven framework

that provides a generic and extensible architecture for the development

of (re)configurable gossip-oriented middleware. GossipKit is based on

a generic interaction model for gossip protocols and relies on a fine-

grained event mechanism to facilitate configuration and reconfiguration

and promote code reuse.

1. INTRODUCTION AND PROBLEM STATEMENT

Gossip-based algorithms have recently become extremely popular.

The underlying concept of these algorithms is that individual nodes

repeatedly exchange data with some randomly selected neighbours,

causing information to eventually spread through the system in

a “rumour-like” fashion. Gossip-based protocols offer several key

advantages over more traditional systems: 1) they provide a scalable

approach to communication in very large systems; 2) thanks to the

randomised and periodic exchange of information, they offer self-

healing capacities and robustness to failures; and 3) they are simple

to implement. Because of these benefits, gossip-based protocols have

been applied to a wide range of contexts such as peer sampling

[9], [17], ad-hoc routing [14], reliable multicast [1], [2], database

replication [10], failure detection [11], and data aggregation [12].

Unfortunately, past research has mainly focused on the develop-

ment and evaluation of new gossip protocols. In particular very few

attempts have been made at developing (re)configurable middleware

architectures to support gossip-based systems. T-Man [5] and the

recent work at Bologna [6] are two of the early gossip-dedicated

frameworks that have been proposed in this area. They both rely

on a common periodic gossip pattern to support a variety of gossip

protocols. Although these frameworks can help develop gossip-based

systems to a significant extent, we contend that they only partially ad-

dress the issues faced by the developers of gossip-based applications.

First, the common periodic gossip pattern they rely on only captures

the features of proactive gossip protocols. As such, it does not support

reactive gossip algorithms. Second, these frameworks tend to be

monolithic and as such do not provide a flexible architecture that

is easily extensible. Third, these frameworks do not support runtime

reconfiguration.

This paper introduces GossipKit, a fine-grained event-driven frame-

work we have developed to ease the development of (re)configurable

gossip-based systems that operate in heterogeneous networks such as

IP-based networks and mobile ad-hoc networks. The goal of Gossip-

Kit is to provide a middleware toolkit that helps programmers and

system designers develop, deploy, and maintain distributed gossip-

oriented applications. GossipKit has a component-based architecture

that promotes code reuse and facilitates the development of new

protocols. By enforcing the same structure across multiple and

possibly co-existing protocols, GossipKit simplifies the deployment

and configuration of multiple protocol instances. Finally, at runtime,

GossipKit allows multiple protocol instances to be dynamically

loaded, operate concurrently, and collaborate with each other in order

to achieve more sophisticated operations.

The contributions of this paper are threefold. First, we identify a

generic and modular interaction pattern that most gossip protocols

follow. Second, we propose an event-driven architecture based on

this pattern that can be easily extended to cover a wider range of

gossip protocols. Third, we briefly evaluate how our event-driven

architecture provides a fine-grained mechanism to compose gossip

protocols within the GossipKit framework.

The remainder of the paper is organised as follows. Section 2

discusses related work. Section 3 presents a study of existing gossip

protocols and explains how this study informed the key design

choices of GossipKit. Section 4 gives an overview of GossipKit’s

architecture. Section 5 describes the current implementation of the

GossipKit framework, while an early evaluation is provided in Section

6. Finally, Section 7 concludes the paper and points out future work.

2. RELATED WORK

Two categories of communication frameworks have been proposed

to support gossip protocols: Gossip Frameworks, which explicitly and

directly support gossip-based systems, and Event-driven communica-

tion systems, which tend to be more generic and more flexible. In

this section we analyse the strengths and weaknesses of both of them

from the viewpoint of gossip protocol development.

Gossip frameworks are specifically designed to support gossip

protocols. Typical examples of such framework are T-Man [5] and

the recent work on this topic at Bologna [6]. These two frameworks

assume that most gossip protocols adopt a common proactive gossip

pattern. In this gossip pattern, a peer P maintains two threads. One

is an active thread, which periodically pushes the local state SP to a

randomly selected peer Q or pulls for Q’s local state SQ. The other

is passive, which listens to push or pull messages from other peers.

If the received message is pull, P replies with SP ; if the received

message is push, P updates SP with the state in the message.

To develop a new gossip protocol within this common proactive

gossip pattern, one only needs to define a state S, a method of peer

selection, an interaction style (i.e. pull, push or pull-push), and a

state update method. Many proactive gossip protocols such as peer

sampling service, data aggregation, and topologic maintenance have

been implemented in such Gossip frameworks.

However, the monolithic design of these Gossip frameworks makes

them inadapted to protocols that use a reactive gossip pattern (e.g.

SCAMP [9]) or those implementing sophisticated optimisations such

as feedback based dissemination decision [13] and premature gossip

death prevention [14]. Furthermore, these Gossip frameworks neither

support reconfiguration nor concurrent operation of multiple gossip

protocols at runtime.

Event-driven communication systems aim to provide a flexi-

ble composition model based on event-driven execution. They are



developed to support general-purpose communication and but not

specifically for gossip protocols. Examples of such communication

systems are Ensemble [3], Cactus [4] and their predecessors Isis

[7] and Coyote [8]. In these environments, a configurable service

(e.g. a Configurable Transport Protocol) is viewed as a composition

of several functional properties (e.g. reliability, flow control, and

ordering). Each functional property is then implemented as a micro-

protocol that consists of a collection of event handlers. Multiple event

handlers may be bound to a particular event and when this event

occurs, all bounded event handlers are executed.

Event-driven communication systems offer a number of benefits for

developing gossip protocols. First, individual micro-protocols can be

reused to construct families of related gossip protocols (implemented

as services) for different applications instead of implementing a new

service from scratch for each protocol. Second, reconfigurability can

be achieved by dynamically loading micro-protocols and rebinding

event handlers to appropriate events. Finally, the use of event handlers

present a fine-grained decomposition of protocols.

However, event-driven frameworks are known to be notoriously

difficult to program and configure as argued in [16]. In large part,

this is because these frameworks do not by themselves include

any domain-specific features (e.g. interaction patterns and common

structure) for individual protocol types.

In order to address the major shortcomings discussed in this

section, GossipKit adopts a hybrid approach that combines domain-

specific abstraction and the strengths of event-driven architecture.

The remaining sections of this paper present its design and prototype

implementation.

3. GOSSIPKIT’S KEY DESIGN CHOICES

To design GossipKit, we first investigated a number of existing

gossip-based protocols and identified similarities and differences

amongst them. In this section, we report on the results of this study

and present the key design choices we made for GossipKit based

on these results. More precisely we look at three aspects of gossip

protocols: Section 3.1 explains the reason of using domain-specific

interfaces for different types of gossip protocol to interface with

external applications. Section 3.2 presents the common interaction

pattern of gossip protocols that we have observed, and finally Section

3.3 argues the benefits of adopting an event-driven architecture for

our gossip protocol framework.

3.1 Application-dependent Interfaces

As mentioned previously, gossip-based solutions have been pro-

posed for a wide range of distributed applications. Different types

of gossip protocol interact with the external world distinctively. For

instance, a gossip-based routing protocol must provide an interface

for external application systems to trigger the route request that

will be gossiped, whilst a gossip protocol for peer sampling service

needs to provide access to the collected peer samples. From our

experience and analysis, it is unlikely to identify a common generic

interface that can separate gossip protocols from the applications that

utilise them. Instead we proposed to identify a set of generic but

domain-specific interfaces that can each support a family of gossip

protocols in a particular application domain. In order to do so, we

have classified gossip protocols into categories in accordance with

their functionality. This has enabled us to identify a common interface

for gossip protocols within each category that can be used to interact

with their external applications. Through domain-specific common

interfaces, external applications can access various types of gossip

protocols that operate in a single framework. Section 4.1 will describe

the mapping between these domain-specific interfaces and control

logic in detail.

3.2 Common Interaction Pattern

Although different types of gossip protocols provide divergent

interfaces to external applications, we have found that, internally,

they all follow the same interaction pattern. This common interaction

pattern can be captured using a modular approach and combines the

proactive gossip pattern that has been identified in [5] and [6], with

the reactive gossip patterns observed on gossip protocols such as [9]

and [14]. This common interaction model is shown in Fig. 1. In this

figure, the modules involved in the interaction are presented as boxes,

and interactions between modules as arrowed lines. The direction of

the arrows indicates which module initiates the interaction, and the

labels show in which sequence these interactions take place.

Fig. 1. Common Interaction Model

Initially, a gossip dissemination can either be raised periodically

(e.g. a periodic pull or push of gossip message), or upon a receipt

of an external request (e.g. an ad-hoc routing protocol requesting a

reactive gossip protocol such as [14] to gossip a route request). These

two interactions are represented as 1a and 1b in Fig. 1, respectively.

The second phase prepares the gossip action. Some gossip pro-

tocols may use various policies to decide whether to gossip at the

current situation (2a). For instance, a reactive gossip protocol may

decide not to gossip the same message twice or forward the message

with a given probability. If a decision is made to forward the gossip

message, the protocol instance must then select the peers it wishes

to gossip with (2b). In addition, many gossip protocols will need to

decide which content is to be gossiped (2c). In particular, a proactive

gossip protocol typically requires to retrieve the gossip content from

its local state if it needs to send periodically its state (push-style

gossip) or reply to a request of its state (pull-style gossip). An

example of gossip content could be the temperature sensed by each

peer.

The third phase is gossip dissemination. It utilises the underlying

network to send gossip messages to the selected peers (3).

Finally, on receipt of a gossip message from the network, a gossip

protocol may react in three different ways, depending on the type of

the received message: 1) it might forward the message to peers that

it knows (4a) and this may involve the interactions in phase 2 (2a, 2b

and 2c); 2) it might respond with its own state (4b) and similarly this

can involve the interactions in phase 2; and 3) it might extract the

state contained in the message and merges with its own state (4c).

Note that this overall interaction model can be invoked recursively

— each module presented in Fig. 1 can itself be implemented as a

gossip protocol that follows the interaction model. For instance, the

Peer Selection module can be a gossip-based peer sampling service

protocol.

In practice, various gossip protocols may be composed from

completely different implementations of modules in Fig. 1, and these



coarse-grained modules can hardly be reused. In order to enable

optimal reuse, the framework allows each module to be composed

from a variety of finer-grained micro-modules.

More precisely, we have noticed that five modules (Gossip, Peer

Selection, Gossip Decision, Gossip Content, and State) in Fig. 1 can

often be decomposed into finer-grained and reusable micro-modules.

Each individual micro-module implements a distinct algorithm, and

different combinations of these micro-modules can form modules

with more sophisticated behaviours. Consider the example presented

in Fig. 2. This example shows three gossip-decision policies used in a

gossip-based ad-hoc routing protocols (Gossip1(p), Gossip2(p, k),

and Gossip3(p, k, p1, n)) [14]. Instead of being implemented as

independent coarse-grained decision modules, these three decision

strategies can reuse the same three fine-grained micro-modules.

Fig. 2. Various Gossip Decision modules realised by different composition
of micro-modules

More precisely, Gossip1, Gossip2, and Gossip3 differ by how

they decide whether to forward the received routing request message

(i.e. they require different versions of the Gossip Decision module):

Gossip1 forwards the message with probability p; Gossip2 is the

same as Gossip1 except that it forwards the message with probability

1 in the fist k hops; and Gossip3 is the same as Gossip2 except

that it forwards message with probability p1 > p if it has less than

n neighbouring peers.

These three different gossip decision strategies can be implemented

by different combination of the three fine-grained Gossip Decision

micro-modules shown on Fig. 2. Gossip1 can directly use micro-

module A as its Gossip Decision module; Gossip2’s Gossip Decision

module can be viewed as a composition of micro-module A and B by

evaluating the return values of these two micro-module using boolean

operation OR to obtain the decision for forwarding the message; and

Gossip3’s Gossip Decision module can be composed from micro-

module A, B, and C in the same way as Gossip2 does.

3.3 Event-driven Architecture

The common interaction pattern of gossip protocols we have just

presented serves as the basis for our architecture design. Based on the

study of gossip protocols, it is clear that a generic system architecture

should satisfy the following two criteria.

First, our architecture should allow micro-modules to be easily

configured and implement the various modules found in our com-

mon interaction pattern. This requirement can be fulfilled using

event-driven frameworks such as Ensemble and Cactus. In these

frameworks, micro-modules (e.g. Gossip Decision micro-modules

shown in Fig. 2) can be viewed as event handlers that are bound to

certain events, and the arbitrary composition of micro-modules can

be simplified to uniform event-bindings. For instance, to compose

a Gossip Decision module, Gossip Decision micro-modules can be

bound to events raised by Gossip modules (Gossip Decision module

is invoked by Gossip module as shown in Fig. 1). The Gossip module

then evaluates the return values of the invoked Gossip Decision

micro-modules using boolean operation OR, so as to obtain the

decision for forwarding the message. Furthermore, one can simply

change the event-bindings to obtain a different composition of micro-

modules.

Second, the architecture should be easily extensible to support

new gossip protocols on the basis of the common interaction pattern

shown in Fig. 1. This is because our interaction pattern is based on

the study of typical and representative gossip protocols. It does not

cover however all existing gossip algorithms. New gossip protocols

may require extra modules and interactions beyond the common

interaction pattern. Therefore, it is important that the system archi-

tecture allows new modules and interactions to be added onto the

pattern. This issue can be addressed by using event-driven systems.

In an event-driven system, interactions between event handlers can

be achieved through passing events and hence, minimises the explicit

references between modules as argued in [8]. As a consequence, our

framework can be easily extended by plugging in new micro-modules

(i.e. event handlers) and reconfiguring the event binding to support

new interaction patterns.

From the above analysis, we have therefore chosen an event-

driven architecture for our framework in order to easily configure

the composition of micro-modules and to improve extensibility of

the common interaction model in Fig. 1. The details of the resulting

architecture are presented in Section 4.

4. GOSSIPKIT’S ARCHITECTURAL OVERVIEW

Our architecture consists of five components as shown in Fig. 3.

In the figure, an interaction between two components is represented

as a pair of connected interface and receptacle. The API components

implement the domain-specific interfaces described in Section 3.1.

The remaining components realise the common interaction pattern

described in Section 3.2. The remainder of this section discusses

these components and their interactions in detail.

Fig. 3. GossipKit Architecture

4.1 API Components

API components aim to uncouple the gossip protocols implemented

by the framework from external applications. Each type of API

component provides a generic interface for external applications to

access a particular category of gossip protocols. When an interface of

an API component is triggered by the connected external application,

it raises an event to the event handler registry. Fig. 4 provides an

example of how API component interacts with external applications.



Fig. 4. Interaction of API Component with External Application

This figure shows the API component for peer sampling service

protocols. This API component provides an IGetPeers interface

for external application or other API components to retrieve peer

information collected by the local peer. When IGetPeers is invoked

(operation 1 in Fig. 4), the API component generates a GetPeers event

to the event handler registry (operation 2). On receiving this event,

the registry executes the proper event handler to handle the GetPeers

event (operation 3, see section 4.3 below). The event handler then

retrieves the peer sampling information stored locally, and returns

the information to the API component as the event handling result

(operation 4 and 5). Finally, the API component provides the peer

sampling information to the external application as the return value

of the IGetPeers interface (operation 6).

4.2 Periodic Trigger Component

The periodic trigger component is optional in the framework. It is

only loaded when the framework is used to support proactive gossip

protocols. This component periodically dispatches events to trigger

specific event handlers that perform different styles of gossiping,

such as pull, push or pull-push. The event-dispatching period (the

gossip frequency) is predetermined at deployment phase, and can be

reconfigured at runtime.

4.3 Event Handler Registry

The event handler registry serves as a broker between event

handlers and event producers (components that raise events). The

event handler registry maintains a table that records event handler

IDs with their associated events (i.e. events that an event handler

can handle). When an event handler’s IHandleEvent interface is

connected to the registry, the registry’s table records the events bound

to the event handler. The event handler registry also provides an

IHandleEvent interface to event producers to trigger the events. On

the invocation of an event, the event registry finds and executes the

registered event handlers that are bound to this particular event type.

It is worth pointing out that the IHandleEvent interface can

also be used by the event handlers themselves. This allows events

raised internally within an event handler to be handled by others,

thus providing a consistent event-based environment and facilitating

interoperability between different gossip protocols.

4.4 Event Handler Plugins

As mentioned in Section 3.3, we considered modules that can

be further decomposed to finer-grained micro-modules (i.e. Gossip,

Peers Selection, Gossip Decision, Gossip Content, and State in Fig.

1) to be developed as a collection of event handlers. This is reflected

by the event handler plugins in Fig. 3. In the figure, multiple

micro-modules belonging to each particular module are designed

as event handler plugins that are contained in the event handler

plugin collection. Micro-modules for the Gossip module and the State

module can be invoked by the event handler registry to handle events

generated by the periodic trigger component, the API components,

and the network component (see below). Micro-modules for the

Gossip module can also send messages using the interface provided

by the network component. Furthermore, each micro-module can

invoke the IHandleEvent interface provided by the event handle

registry to interoperate with other micro-modules.

4.5 Network Component

This component provides network level communication to other

components, and as such is responsible both for sending messages

generated by the Gossip module and for delivering message events

received from the network to the event handler registry. Through this

component, gossip protocols within the GossipKit framework can

operate on transport layers such as UDP, TCP, or ad-hoc routing.

The network component can also operate on virtual transport layers

in order to utilise the features provided by various component-based

virtual overlays such as GridKit [19].

5. IMPLEMENTATION

GossipKit’s prototype implementation is based on the Java version

of OpenCom [15], a lightweight, efficient and reflective component

model. Java’s portability enables GossipKit to operate on various

platforms, from desktop computers through to PDA. We implemented

the micro-modules and event handler plugins shown in Fig. 3 as

individual OpenCom components, while we realised events with a

normal Java class. This class contains: (i) a header that identifies the

type of the event, (ii) a body containing data to be handled by the

corresponding event handlers, (iii) a source ID identifying the peer

that generated the event, and (iv) a target ID that defines the target

peer that should receive the event.

It is worth emphasising the implementation of the periodic trigger

component, which can be viewed as a task scheduler that can be

utilised by multiple protocols to perform periodic gossiping with

different frequencies. Its implementation only requires a single Java

thread rather than spawning one thread for each proactive gossip

protocol. If multiple proactive gossip protocols operate concurrently

at runtime, the resource utilisation of the system can be signif-

icantly improved by minimising the use of resource-consuming

multi-threading. This effectively reduces memory usage if GossipKit

operates on mobile devices that are resource constraint.

6. EARLY EVALUATION

We evaluated our GossipKit framework on two categories of gossip

protocols: We implemented three peer-sampling services (SCAMP

[9], PSS [17], and the topologic construction protocol described in

T-Man [5]), and two reliable multicast protocols (Bimodal Multicast

[2], and Lpbcast [1]). In the following, we focus our evaluation on the

reusability of the GossipKit framework (Section 6.1). We then briefly

discuss the configurability and reconfigurability of our framework in

Section 6.2.

6.1 Reusability

We evaluated the reusability of GossipKit using a quantitative

measuring approach suggested in [18]. This approach measures the

size of the Java classes that make up different configurations of com-

ponents. In Fig. 5, the first three configurations indicate the cost of

each individual protocol in the framework (a tick means the protocol

is selected in the configuration). The size of configuring multiple

protocols is measured in Configurations 4-6. These measurements are

compared against the side-by-side measurement of individual proto-

cols. It can be seen that compiled Java code size is reduced by about

33% in Configuration 4 and 5, and 48% in Configuration 6. These

results show that the GossipKit framework does not only promote

code reuse for developing gossip protocols that belong to the same



category (SCAMP and PPS in Configuration 4 belong to the peer

sampling category), but also for those belong to different categories

(PPS and Bimodal Multicast in Configuration 5). Furthermore, the

evaluation results indicate the reusable quantity increases as more

gossip protocols are deployed in GossipKit (Configuration 6).

Fig. 5. Reusability Measurement.

6.2 Configurability and Reconfigurability

GossipKit offers a common component architecture to simplify the

configuration of gossip-oriented middleware. It does so by providing

module types and connection bindings between modules that remain

the same regardless of the implemented protocols. However, the use

of fine-grained micro-modules in GossipKit’s event-driven architec-

ture can make configuration a time-consuming process. Although

an event-driven architecture simplifies the configuration of micro-

modules into modules as discussed in Section 3.3, the manual

configuration of event bindings for a large number of micro-modules

still remains a time-consuming task, in particular when a user needs

to deploy a number of gossip protocols to operate concurrently within

GossipKit. From our experiences on the development of five gossip

protocols, we have noticed that GossipKit eases the configuration

process for these gossip protocols to a certain level. However, further

study is required to evaluate whether GossipKit can support easy

configuration of a broader range of gossip protocols.

GossipKit supports fine-grained reconfiguration to adapt to envi-

ronmental changes — different protocol behaviours can be achieved

by replacing a simple single component. For instance, a proactive

gossip protocol that provides peer sampling service can be modified

to support number averaging by replacing the stateful event handler,

and the network component that supports communication for multiple

gossip protocols can be replaced by another routing scheme. This

form of component replacement relies on the mechanisms directly

provided by OpenCOM. A detailed discussion of these mechanisms

is however out of the scope of this paper.

7. CONCLUSION AND FUTURE WORK

This paper has presented GossipKit, an event-based gossip protocol

framework. This framework aims to facilitate the development of

configurable and reconfigurable middleware that supports multiple

gossip protocols potentially operating in parallel under different types

of networks. We have presented an early prototype implemented using

a reflective component model (OpenCom), and we have discussed

some of the benefits we have observed when implementing several

gossip protocols with our framework. Our early evaluation indicates

that GossipKit promotes code reuse, simplifies configuration for

deploying gossip protocol middleware, reduces the overhead for

runtime reconfiguration, and minimises the resource usage at runtime

to a certain level.

In the future, we plan to explore a broader range of gossip protocols

in order to identify more domain-specific features and to improve the

genericity of the common interaction model. We are also currently

building a configuration tool to allow users to describe a selection and

composition of micro-modules, and to automatically configure event

bindings of event handlers in order to address the issue discussed

in Section 6.2. Furthermore, we plan to utilise the self-organising

features of gossip protocols to improve GossipKit towards a self-

adaptive framework so that it can automatically reconfigure itself

and adapt to changes in its environment.

REFERENCES

[1] P. Eugster, R. Guerraoui, S. Handurukande, A.-M. Kermarrec, and P.
Kouznetsov, Lightweight Probabilistic Broadcast. In IEEE International
Conference on Dependable Systems and Networks(DSN2001), July 2001.

[2] K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu and Y. Minsky,
Bimodal multicast. TR99-1745, May 11, 1999.

[3] R. Renesse, K. Birman, M. Hayden, A. Vaysburd and D. Karr, Building

Adaptive Systems Using Ensemble. Cornell University Technical Report,
TR97-1638, July 1997.

[4] M. Hiltunen and R. Schlichting, The Cactus Approach to Building

Configurable Middleware Services. Proceedings of the Workshop on
Dependable System Middleware and Group Communication (DSMGC
2000), Nuremberg, Germany (October 2000).

[5] M. Jelasity and O. Babaoglu, T-Man: Gossip-based overlay topology man-

agement. In EngineeringSelf-Organising Systems: Third International
Workshop (ESOA 2005), Revised Selected Papers.

[6] O. Babaoglu, Gossiping in Bologna. http://www.cs.cornell.edu/Courses/
cs514/2007sp/UniBo%20Project/Leiden-Gossip.ppt.

[7] K. Birman, A. Abbadi, W. Dietrich, T. Joseph and T. Raeuchle, An

Overview of the ISIS Project. IEEE Distributed Processing Technical
Committee Newsletter. January 1985.

[8] N. Bhatti, M. Hiltunen, R. Schlichting and W. Chiu, Coyote: A System for

Constructing Fine-Grain Configurable Communication Services. ACM
Transactions on Computer Systems, November 1998.

[9] A. Ganesh, A.-M. Kermarrec and L. Massoulie, SCAMP: Peer-to-Peer

Lightweight Membership Service for Large-Scale Group Communication.
In Proc. of the 3rd International workshop on Networked Group Com-
munication, 2001.

[10] D. Agrawal, A. E. Abbadi and R. Steinke, Epidemic algorithms in

replicated databases. In Proc. 16th ACM Symp. on Principles of
Database Systems, 1997.

[11] R. van Renesse, Y. Minsky and M. Hayden, A gossip-style failure-

detection service. In Proc. IFIP Intl. Conference on Distributed Systems
Platform and Open Distributed Processing, 1998.

[12] I.Gupta, R. van Renesse and K.Birman, Scalable fault-tolerant aggrga-

tion in large process groups. In Proc. Conf. on Dependable Systems
and Networks, 2001.

[13] A. Demers, D. Greene, C. Hauser et al. Epidemic algorithms for

replicated database maintenance. In Proc. of the sixth annual ACM
Symposium on Principles of distributed computing, 1987.

[14] Z. Haas, J. Halpern and L. Li, Gossip-based Ad-Hoc Routing. Unpub-
lished. http://citeseer.ist.psu.edu/article/haas02gossipbased.html

[15] M. Clarke, G. Blair, G. Coulson and N. Parlavantzasco An efficient

component model for the construction of adaptive middleware. In Proc.
of IFIP/ACM International Conference on Distributed Systems Platforms
and Open Distributed Processing (Middleware). Germany, 2001.

[16] M. Hiltunen, F. Taiani and R. Schlichting, Reflections on Aspects and

Configurable Protocols. The Fifth International Conference on Aspect-
Oriented Software Development (AOSD.06), Bonn, Germany, March 20-
24, 2006, pp.87-98 (12 p.).

[17] M. Jelasity, R. Guerraoui, A.-M. Kermarrec and M. Steen, The Peer

Sampling Service: Experimental Evaluation of Unstructured Gossip-

Based Implementations. Middleware ’04: Proceedings of the 5th
ACM/IFIP/USENIX international conference on Middleware, Toronto,
Canada, 2004, pp. 79-98.

[18] C. Flores-Cortes, G. Blair and P. Grace, A Multi-protocol Framework for

Ad-Hoc Service Discovery. In Proc. of the 4th International Workshop
on on Middleware for Pervasive and Ad-Hoc Computing (MPAC ’06),
co-located with Middleware 2006, Melbourne, Australia, 2006.

[19] P. Grace, G. Coulson, G. Blair et al. GRIDKIT: Pluggable Overlay

Networks for Grid Computing. In Proc.of International Symposium
on Distributed Objects and Applications(DOA), Larnaca, Cyprus, 2004.


