
ESIR	SPP	–	TP1	&	2	(non	noté)	

Exercise	1:	

In Java write a multithreaded program that manipulates one shared long variable so that: 

- 5 threads increment this variable 100,000 times; 
- 15 other threads read this variable 100,000 times, and write out what they have read 

onto the console every 20,000 iterations (with their ID as prefix). 

1 – Write a first version of your program without any synchronisation. What do you observe? 
Why do you think this is the case? 

2 – Make your program thread-safe with a normal re-entrant lock. Measure the execution time 
taken by your program. 

3 – Write a second version of your program, in which you replace the normal lock by a 
read/write lock. Measure the execution time of your program. What do you observe? Why do 
you think this is the case? 

4 – We will now artificially increase the cost of the integer operations performed on the shared 

variable (both increment and read), by using Thread.sleep(..), and reassess the effect of a 

read/write lock over a re-entrant lock. To this aim, write two new versions of your program 
which: 

• only use 1000 iterations of each loop. Set the console printouts to occur every 200 
iterations. 

• artificially delay each operation on the shared variable by 1ms using sleep(..). 

One version should use standard re-entrant locks, the other read-write locks. Measure and 
compare the times obtain. How do you interpret them? 

Exercise	2:	

1 – Implement your own version of a read/write lock using non-reentrant locks (e.g. binary 
semaphores) in Java. You should have one Class called "MyRWLock" with four methods 
"lockRead()", "lockWrite()", "unlockRead()" and "unlockWrite()". 

2 – Why do you need non-rentrant locks? 

3 – Use this implementation in the code of exercise 2. Measure the execution time of your 
program. Do you observe any difference? 

4 – (Optional) Merge both unlock operations into one single method. 

Exercise	3:	

In Java write a multithreaded program that manipulates one instance of ArrayList<E> containing 
Long integers (class Long) so that: 

- 10 threads insert their ID into the list in random positions 10,000 times; 
- 10 other threads delete random elements of the list 10,000 times; 
- one observer thread prints out the size of the list every 0.05s (50ms). 

 

1 – Write a first version of your program without any synchronisation. What do you observe? 
Why do you think this is the case? 



2 – Make your program thread-safe using a monitor. Do you need to use signal and wait? 

3 – Measure the execution time of your program with 3, 7, 11, … up to 43 threads. Draw a chart 
of your measurements. What do you observe? 

 


