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Abstract 
 
The goal of this paper is to assess the value of simple 
features that are widely available in off-the-shelf CORBA 
and Java platforms for the implementation of fault-
tolerance mechanisms in industry-grade systems. This 
work builds on knowledge gained at LAAS from previous 
work on the prototyping of reflective fault tolerant 
frameworks. We describe how we used the interception 
and state capture mechanisms that are available in 
CORBA and Java to implement a simple replication 
strategy on a small middleware-based system built upon 
GNU/Linux and JOrbacus. We discuss the benefits and 
the limits of the resulting system from a practical point of 
view. 
 
1. Introduction 
 
The objective of this practical experience report is to 
illustrate the extent to which basic mechanisms like 
CORBA Portable Interceptors and Java Serialization can 
be used to implement simple replication protocols. The 
portable interceptor mechanism introduced by recent 
versions of the CORBA standard  [1] offers a powerful 
means to intercept interactions in a distributed system, 
while Java’s serialization mechanisms [2] provide a 
transparent and portable state capture facility. From a 
practitioner’s point of view, however, the interest of these 
features for the implementation of fault tolerance 
mechanisms remains to be assessed. We should emphasize 
that the objective of this paper is not to present a full-
fledged framework for distributed fault-tolerance. Many 
works with industrial relevance already provide such 
frameworks, in particular the Fault-Tolerant CORBA 
standard [3], and corresponding implementations such as 
IRL [4] and Eternal [5]. Other existing approaches use 
portable interceptors, such as the FTS [6] project., but 
require the use of a non-standard object adapter to 
implement the group communication routines, resulting in 
heavyweight modifications of the underlying ORB. Our 
primary goal is to investigate lightweight implementation 
approaches based on standard off-the-shelf platforms and 
to evaluate how far this line of attack can be pushed. In 
this paper, we investigate this question by reporting on 
experiments performed on a prototype platform called 

DAISY (Dependable Adaptive Interceptors and 
Serialization-based sYstem) that uses these technologies. 
DAISY is based on our yearlong experience in the design 
and validation of fault tolerant reflective platforms and 
takes into account the lessons learned from their 
implementation [7]. 
The paper is organized as follows: In Section 2 we present 
our motivations in this work and the basic elements of our 
middleware-based platform. In Section 3 we describe how 
portable interceptors were used to develop a simple 
replication strategy. In Section 4 we discuss the benefits 
and the limits of the current version of these basic off-the-
shelf mechanisms. 
 
2. Motivations and platform 
 
A computer system is said to be reflective if it can observe 
and modify itself as part of its own computation [8]. The 
use of reflection introduces a clean separation in a 
system’s structure between what is called the base level, 
where normal computation occurs, and the meta-level, 
where computation about the system takes place. The 
interactions between levels are categorized as reification 
(when the meta-level is notified of a change occurring at 
the base level), introspection (when the meta-level 
observes the base level), and intercession (when the meta-
level modifies the structure or the behavior of the base 
level).  
These mechanisms are useful for separation of concerns 
and have made reflective architectures particularly 
attractive to implement non-functional mechanisms such 
as fault tolerance and security in more transparent and 
more adaptable ways. In the last decade, several projects 
have investigated this issue (Maud [9], Garf [10], Friends 
[7]). The Friends system for instance is a CORBA-
compliant reflective fault-tolerant platform, based on a 
Meta Object Protocol that is built using open compilation 
facilities [11]. Today, limited reflection capabilities have 
made their way into some of the most popular 
development platforms, such as CORBA and Java. This 
evolution highlights the increasing attractiveness of 
reflection for industry, to dynamically adapt non-
functional requirements. To investigate the benefits and 
limitations of these standard reflective facilities, we 
describe here how passive replication of CORBA objects 
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can be implemented. This platform is currently being used 
to develop other replication strategies and more 
importantly to implement reflection at various levels, both 
at the middleware and the operating system levels, using 
the concept of multi-layer reflection we presented at DSN 
2003 [12]. 
 

 
Figure 1. Middleware-based platform 

 
Our prototype platform (see Figure 1) is organized in a 
layered architecture that integrates the middleware layers 
ORBacus (JORBacus v4.1.2), and Sun’s Java v1.4.1, on 
top of the GNU/Linux operating system (Linux 2.4 for 
x86). 
 
3. Implementation 
 
Our implementation of the passive replication mechanism 
combines Portable Interceptors, to synchronize remote 
clients and the different server replicas, and the Java 
Serialization mechanisms to obtain the internal state of 
application objects.  
We use two kinds of Portable Interceptors, according 
whether they handle the client or the server side of the 
interaction (Figure 2). On the client side, the PIClient 
intercepts the outgoing requests issued by clients and 
forwards them to the current primary replica. On the 
server side, the PIServer has two running modes: primary 
and backup. The PIServer handles the processing of 
requests, the transfer of request, reply and state 
information from the primary to the backup during fault-
free phases, and ensures smooth reconfiguration when one 
of the replicas crashes. The PIServer of the primary 
delivers requests to the backup replica. We do not assume 
the availability of atomic multicast services.  
The PIClient and PIServer work together to detect the 
crash of the Primary server and switch from the primary to 
the backup server. As crash detection is not the primary 
focus of this paper, we choose to use a simple client-side 
detection scheme that relies on the error detection 
mechanisms of the underlying ORB. Clients first discover 
crashes when the ORB raises an exception concerning the 
connection with the primary. After retrying the request a 
given number of times, a client issues its following 
requests to the backup replica. When the backup receives 
a request from a client, its PIServer checks that the 

primary is down by sending a ping request to the primary, 
then switches to primary mode. Duplicated requests on the 
server side are discarded using a system-wide unique ID.  
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Figure 2. Architecture with PIClient & PIServer for 

primary-backup replication 

Using these Portable Interceptors we can observe the 
ongoing requests between clients and the server, and 
trigger the different stages of the replication protocol 
accordingly. However, except for a number of exception-
raising or -resignaling techniques described below, 
CORBA’s portable interceptors do not allow requests or 
replies to be modified. In addition, a portable interceptor 
inherits its concurrency model from the server that it is 
attached to. Depending on this concurrency model, 
requests can be served either sequentially or in parallel; 
this is completely beyond the control of the PIs.  
In this context, the only possibilities for controlling 
request handling from within a portable interceptor are 
either to suspend the current thread, thus blocking the 
request, or to throw an exception to prevent the request 
from being processed. A portable interceptor can intercept 
the sending and the receiving of a request, the reception of 
a reply, and the reception of CORBA exceptions. This last 
feature can be used to “transform” a CORBA exception, 
by propagating a different exception from the intercepted 
one (we use this technique, as we shall see).  
 

3.1. Overview of the implementation 
 
The behavior of the client’s interceptor (PIClient) is 
shown by the pseudo-code below. The PIClient comprises 
three entry points: the send_request method is called 
by the ORB before an outgoing request is sent to the 
transport layer; the receive_reply method is called 
before an incoming request is handed to the application; 
and the receive_exception method is called by the 
ORB before a CORBA exception is delivered to the 
application level.  
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Constructor: 
 obtain the primary and backup 

references through the name server, 
determine the client unique ID 

send_request: 
 add the request unique ID for the 

client to the request (= client 
unique ID + request number) 

receive_reply: 
 increment request counter 
receive_exception: 
 issue ForwardRequest exceptions to 

the primary (twice), then the backup 

 
The core of the client-side interceptor’s role takes place in 
the receive_exception method when the ORB 
signals that a transient communications error has affected 
a message sent to the server. A ForwardRequest is a 
special kind of exception that a CORBA server can raise 
to redirect a client to a different server. When it detects a 
communication error, the client interceptor raises a 
ForwardRequest exception to tell the client to reissue 
its request (this is a case of exception transformation, as 
mentioned earlier). After two consecutive errors from the 
primary, the client interceptor assumes that the primary 
has failed and redirects further requests to the backup, 
thus triggering a primary-backup switch.  
On the server side, the primary and backup replicas each 
contain a PIServer working in two different modes, 
respectively primary and backup mode: 
1. In primary mode, the PIServer relays requests to the 

primary server for processing, fetches the server’s 
internal state after processing (using Java 
serialization), and sends a checkpoint to the backup 
replica. The checkpoint includes the ID of the 
corresponding request, the state information and a 
copy of the reply message, if any. 

2. In backup mode, the PIServer receives checkpoints 
and uses them to update the state of the server replica 
using Java serialization. When the backup receives a 
primary failure notification, it switches to “primary 
mode” and starts processing requests. The unique 
request identifier included in both the requests and the 
checkpoints is used to avoid processing the same 
request twice when the backup switches to primary 
mode. 

For clarity, we first show the pseudo-code for a scenario 
with a single client in the system. The interceptor’s 
receive_request method is invoked by the ORB 
before a request is transferred to the server object, and the 
send_reply method is called before a reply is passed to 
the transport layer. The modifications necessary in the 
multi-client case are discussed later. 
Constructor: 
if (primaryRole) 
 obtain the reference of the backup 
Determine server unique ID 

 

receive_request: 
if (primaryRole) 
 if first activation of PIServer 
  obtain the reference of  
  the Primary Server 
  /** will be used to issue direct 
   requests to the primary, like 
   getState for instance **/ 
else   /** backup role **/ 
 if first activation of PIServer 
  obtain the references of the Primary  
  and the Backup Servers 
 if current request is 'set_state'   
  /** fault-free behavior **/ 
  Backup.set_state(bufferedState) 
  bufferedState     := primaryState 
  bufferedRequestID := requestID 
 else  /** primary has crashed **/ 
  primaryRole := true  ; 
  if (requestID==bufferedRequestID) 
   /** re-execution to produce reply 

**/ 
   bufferedState     := nil ; 
   bufferedRequestID := nil ; 
  else  /** the received state info 

can be applied **/ 
   Backup.set_state(bufferedState) 
  endIf 
 endIf 
endIf 

 
send_reply: 
if(primaryRole) 
 state=Primary.get_state() 
 backup.set_state(state,<requestID,cli

entID>) 

 
The start of receive_request contains some 
reference handling due to the fact that a portable 
interceptor is initialized before the CORBA server it is 
attached to. Thus, the reference of the primary and the 
backup cannot be obtained during the PI’s initialization 
and must be obtained afterwards, once the system is 
completely initialized. 
In the receive_request code, set_state requests 
received from the primary are not applied immediately by 
the backup. They are buffered until a new set_state  
request arrives (in which case they are applied), or until 
the backup becomes primary. The set_state requests 
must be buffered because an interceptor is not able to 
modify a request, and in particular can’t force a request to 
return a predefined result (this limitation will be discussed 
in Section 4). When the primary crashes, the client and the 
remaining backup must reach a common view on when the 
crash occurred: (i) while the primary was idle, or (ii) while 
a request was being handled, or (iii) just after a 
set_state request was sent and before the 
corresponding reply goes out. Cases (i) and (ii) are easy to 
handle: the backup applies the last set_state request it 
received, and takes over the primary’s role. Case (iii) is 
more difficult to tackle. In this case, the client re-issues its 
request to the backup, although the primary has already 
generated a set_state message for this request. 
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Because we can’t impose a result on a request from within 
a portable interceptor, the only possibility for the backup 
to answer the client is to re-execute its request. For this 
reason we must discard the last set_state request that 
was received by the backup, otherwise, we would execute 
the same request twice, leading to a possible system 
inconsistency. This is the rationale for the buffering of 
requests. 
This buffering technique works correctly in a single-client 
case, because in case (iii) the first request received by the 
backup necessarily corresponds to the last received 
set_state request (we assume that our clients are 
single-threaded). The multi-client case is more subtle, and 
is discussed in the next section. 

3.2. Multi-client implementation 
Some difficulties here are inherent to distributed 
programming in an asynchronous context, and others arise 
from limitations of CORBA’s portable interceptors. 
As in the single-client case, in case of failure, the backup 
and the remaining clients must agree on when the primary 
has crashed to avoid inconsistencies. However, unlike the 
single-client case, the backup can't determine with 
certainty whether the system is in case (i), (ii) or (iii) of 
the above classification. First, the backup can never know 
with certainty that it has received all set_state 
requests issued before the crash (in the mono client case 
this is done by numbering the client's requests and 
set_state info). Secondly, when the backup is asked 
to become the primary by some client C1, if the last 
set_state info it received corresponds to a request 
issued by another client C2, the backup can never be sure 
whether C2 has obtained its reply [case (i)] or whether C2 
is going to contact it again by re-issuing its request 
[case(iii)]. In case (i), the backup must apply the 
set_state info, or C2 would have seen a future that 
would have been lost by the crash, resulting in an 
inconsistency. In case (ii), the backup can't apply the 
set_state info, otherwise it won't be able to answer C2 
without re-executing its request twice (as in the single-
client case), thus also resulting in an inconsistency.  
Because we're using TCP/IP connections, which are 
asynchronous, these problems are demonstrated to have 
no solution that works in all configurations. To solve the 
problem, we rely on an implicit synchrony assumption, by 
assuming that with a very high probability, messages don't 
take longer than a predefined duration to reach their 
destination. This means that after a given time window, 
the reply issued by the primary has been received by the 
client, or that the client has re-sent the request to the 
backup. Of course, the use of an atomic broadcast 
framework would resolve the problems caused by the 
system’s asynchrony by imposing a total order on all 
requests. Unfortunately, CORBA portable interceptors 
don't support this option, because the communication 
primitives used by the ORB cannot be adapted using the 
PI mechanisms. 

3.3. Application 
We have used a simple banking application to assess the 
performance of these fault tolerance mechanisms. The 
server is a CORBA service that implements the basic 
operations needed to operate bank accounts: account 
creation, balance of an account, deposit or withdrawal on 
an account, transfer between two accounts, etc. The client 
accesses the bank service through CORBA requests. We 
have compared the latency of client requests in three 
different system configurations: 

A. The standalone banking application; 
B. The banking application together with 

“transparent” portable interceptors, in order to 
measure interception overhead; 

C. A fault-free execution of the banking application 
with interceptors implementing the full primary-
backup replication mechanism. 

 
Our experimental testbed comprises hosts with 1GHz i686 
processors running Linux 2.4, interconnected over 
100Mb/s Ethernet. The client runs on a different host from 
the server, and in the fault tolerant configuration the 
primary and backup run on the same host. We performed 
1000 experiments, each experiment including 1000 
invocations (account creation, withdrawal or deposit). We 
measured the duration of an experiment and obtained the 
results shown in Figure 3. 
 

A. Response time for a remote client 

B. Cost breakdown of the DAISY mechanisms 

Figure 3. Preliminary performance measurements 

Figure 3.A shows response latency (mean, minimum and 
maximum values) for configurations A, B and C. The 
results show that while the use of “empty” interceptors 
only increases response latency by 15%, the addition of 
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fault tolerance mechanisms in the interceptors 
significantly increases overhead. It is worth noting that 
our application is very simple, and that the relative cost of 
these mechanisms would be considerably lower for a more 
realistic application. Figure 3.B shows the breakdown of 
this overhead per aspect of the mechanism. Except for the 
interception overhead, which is independent of the nature 
of the application, most of these costs depend on the size 
of the checkpointed state. These variable costs include 
serialization of the primary’s state, the transfer of 
information for replica synchronization, and the 
deserialization of the state on the backup. 
 
4. Discussion 
 
The previous section described the use of Java 
serialization and CORBA portable interceptors to 
implement a simple replication mechanism. In this 
section, we consider the advantages of these basic 
reflective mechanisms over more conventional 
implementation approaches, and discuss a number of 
limitations that they impose. 
The JVM Serialization interface provides access to the 
internal state of Java objects in a portable format. This 
relieves application developers from the task of 
implementing this critical aspect of the replication 
protocol. We use Java serialization to checkpoint 
application objects on the primary and to apply 
checkpoints on the backup. In more traditional 
approaches, the application programmer would have to 
implement (correct!) methods for saving and restoring the 
state of the application. However, the state of an 
application includes several facets, not only the internal 
state of the application objects, but also some external 
state that is embedded within the underlying executive 
layers [13]. Java serialization deals only with the internal 
state, i.e. the attributes of the object. Handling the other 
facets calls for more advanced reflective features and 
requires a clear understanding of the mapping relations 
between application objects, middleware and operating 
system data structures. 
CORBA portable interceptors enable requests to be 
intercepted and processed by the fault-tolerance 
mechanisms. The main benefit is that client-server 
interactions can be controlled transparently, without 
requiring any modifications to the application-level code. 
Portable interceptors can be inserted easily without 
disturbing the development of application objects and thus 
can be changed (at load time only) depending on system 
configuration and environmental conditions. Moreover, as 
it resides at the ORB level, the interceptor is independent 
from the operating system and transport layer. Interceptors 
are also independent of the server and client application, 
and are therefore portable and reusable.   
However, CORBA’s Portable Interceptors have a number 
of important drawbacks.  

1. PIs cannot modify a request’s input parameters. 
Implementing certain non-functional mechanisms, such as 
ciphering client-server communications, would require the 
ability to modify the parameters of a request, by replacing 
them with their ciphered counterpart. However, PIs are 
able to piggyback some information along with the 
request and are thus able to sign requests. 
2. PIs cannot modify a request’s output parameters. 
In our implementation, the backup cannot directly apply 
the checkpoints it receives to its object. It buffers them 
and waits in order to know whether the invoker of the 
request corresponding to the checkpoint has received the 
reply. When a client has not received its reply, the backup 
receives the corresponding request but cannot forge a 
reply; it has to re-process the request in order to produce 
the reply. The ability to modify output parameters would 
simplify this mechanism considerably: the backup could 
cache the reply received from the primary and apply the 
checkpoint. When receiving the corresponding request 
from the client, it would send the reply back without 
having to process the request twice. 
3. PIs must invoke every request. 
The only way to prevent a PI from invoking a request is to 
throw an exception that will probably be interpreted as an 
error signal at the client side. Some fault-tolerant 
mechanisms, such as the leader-follower replication 
algorithm, cannot be easily implemented with this 
restriction. In a leader-follower configuration, several 
replicas receive the requests but only one replies to them. 
This would necessitate cheating if implemented with PIs. 
4. PIs are not CORBA objects. 
PIs cannot communicate with one another directly. In our 
implementation, the PI of the primary sends set_state 
requests to the Backup server in order to communicate 
with the PI of the backup. The backup PI intercepts the 
invocation, checks what type of request it is (for the server 
or the PI). If it is for the PI, it will throw an exception in 
order not to process the request. This trick requires the 
server to implement an interface that includes an “empty” 
set_state method that is used only by the interceptors. 
Likewise, the server must implement an empty ping 
method that is used for error detection. These methods 
have nothing to do with application-level concerns, but 
limitations of interceptor mechanism means that they 
become visible to application programmers. This 
intrusiveness could be eliminated if interceptors were 
CORBA objects: each interceptor would have an object 
reference, would be able to implement an interface, and 
would be able to communicate with other interceptors. 
The fault tolerance mechanisms would be more 
transparent for the user and the interceptors would be 
easier to develop. 
5. PIs don’t have their own thread. 
As we mentioned above, each interceptor inherits a 
concurrency model from its associated CORBA object. 
Whether the object is single- or multi-threaded, the 
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interceptor is only activated by the arrival of an incoming 
request; it cannot implement its own event loop. This 
means that certain mechanisms, such as periodic “I’m 
alive” messages, cannot be easily implemented. 
6. PIs cannot reorder requests. 
As discussed in section 3.2, handling multiple clients is 
very difficult. When the backup PI is switching to the 
primary mode, it has to wait for the last request processed 
by the former primary in order to decide whether or not to 
apply the last checkpoint it received. It might have 
received a certain number of requests from other clients in 
the meantime, and has to “freeze” them while waiting for 
this particular request. This is very difficult with some 
ORB threading strategies. A solution would be for 
requests to be first class objects, which means being able 
to manipulate them as regular objects: passivate, serialize 
and forward them [12]. This change would simplify the 
development of complex fault-tolerance strategies, but 
would require more work at the middleware level when 
providing information to the interceptor. 
 
5. Conclusion 
 
This experimental work shows that simple replication 
mechanisms can be implemented from basic and 
standardized interception and serialization mechanisms, 
namely CORBA Portable Interceptors and Java 
Serialization. A set of customized Portable Interceptors 
could be developed to offer a wide range of fault-tolerance 
strategies that could be selected according to the needs of 
the application and the infrastructure configuration. It is 
worth noting that these mechanisms can be provided in a 
non-intrusive manner, transparently to the application 
level. However, our work has highlighted a number of 
limitations in CORBA’s interceptors. Some of the issues 
identified in section 4 could easily be solved by a new 
generation of portable interceptors, which would greatly 
facilitate the implementation of replication-based fault 
tolerance mechanisms. These improvements would be 
industrially relevant as these standard executive supports 
are now being used in several application domains where 
lightweight and non-intrusive implementation of 
replicated processing for availability has some merits. 
We are currently using the DAISY platform to investigate 
the implementation of extended fault tolerance features, 
with a focus on wrapping techniques for improved error 
detection at the communication level, at the middleware 
level, and at the operating system level. Regarding 
behavioral and state control at all levels of the system 
architecture, we are currently investigating multilevel 
reflection, i.e. reflective principles applied to all system 
layers, previously presented at DSN’2003 [12].  
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