
DSN-2004, The Int. Conf. on Dependable Systems and Networks — Florence, Italy —June 28th - July 1, 2004

(Saved: Tuesday 13 April 2004 10:04) -0-

Implementing Simple Replication Protocols using
CORBA Portable Interceptors and Java Serialization

Taha Bennani, Laurent Blain, Ludovic Courtes, Jean-Charles Fabre,
Marc-Olivier Killijian, Eric Marsden, François Taïani

LAAS-CNRS, 7, avenue du Colonel Roche, 31077 Toulouse Cedex 4, France

Copyright Notice

© 2002 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the terms and
constraints invoked by each author's copyright. In most cases, these works may not be
reposted without the explicit permission of the copyright holder.

This article will be presented at the International Conference on Dependable Systems
and Networks (DSN-2004) to be held in Florence, Italy on June 28th - July 1, 2004. It
will be published in the proceedings of the aforementioned conference.

DSN-2004, The Int. Conf. on Dependable Systems and Networks — Florence, Italy —June 28th - July 1, 2004

-2-

DSN-2004, The Int. Conf. on Dependable Systems and Networks — Florence, Italy —June 28th - July 1, 2004

-3-

Implementing Simple Replication Protocols using
CORBA Portable Interceptors and Java Serialization

Taha Bennani, Laurent Blain, Ludovic Courtes, Jean-Charles Fabre,
Marc-Olivier Killijian, Eric Marsden, François Taïani

LAAS-CNRS, 7, Avenue du Colonel Roche, 31077 Toulouse cedex 4 – France

Abstract

The goal of this paper is to assess the value of simple
features that are widely available in off-the-shelf CORBA
and Java platforms for the implementation of fault-
tolerance mechanisms in industry-grade systems. This
work builds on knowledge gained at LAAS from previous
work on the prototyping of reflective fault tolerant
frameworks. We describe how we used the interception
and state capture mechanisms that are available in
CORBA and Java to implement a simple replication
strategy on a small middleware-based system built upon
GNU/Linux and JOrbacus. We discuss the benefits and
the limits of the resulting system from a practical point of
view.

1. Introduction

The objective of this practical experience report is to
illustrate the extent to which basic mechanisms like
CORBA Portable Interceptors and Java Serialization can
be used to implement simple replication protocols. The
portable interceptor mechanism introduced by recent
versions of the CORBA standard [1] offers a powerful
means to intercept interactions in a distributed system,
while Java’s serialization mechanisms [2] provide a
transparent and portable state capture facility. From a
practitioner’s point of view, however, the interest of these
features for the implementation of fault tolerance
mechanisms remains to be assessed. We should emphasize
that the objective of this paper is not to present a full-
fledged framework for distributed fault-tolerance. Many
works with industrial relevance already provide such
frameworks, in particular the Fault-Tolerant CORBA
standard [3], and corresponding implementations such as
IRL [4] and Eternal [5]. Other existing approaches use
portable interceptors, such as the FTS [6] project., but
require the use of a non-standard object adapter to
implement the group communication routines, resulting in
heavyweight modifications of the underlying ORB. Our
primary goal is to investigate lightweight implementation
approaches based on standard off-the-shelf platforms and
to evaluate how far this line of attack can be pushed. In
this paper, we investigate this question by reporting on
experiments performed on a prototype platform called

DAISY (Dependable Adaptive Interceptors and
Serialization-based sYstem) that uses these technologies.
DAISY is based on our yearlong experience in the design
and validation of fault tolerant reflective platforms and
takes into account the lessons learned from their
implementation [7].
The paper is organized as follows: In Section 2 we present
our motivations in this work and the basic elements of our
middleware-based platform. In Section 3 we describe how
portable interceptors were used to develop a simple
replication strategy. In Section 4 we discuss the benefits
and the limits of the current version of these basic off-the-
shelf mechanisms.

2. Motivations and platform

A computer system is said to be reflective if it can observe
and modify itself as part of its own computation [8]. The
use of reflection introduces a clean separation in a
system’s structure between what is called the base level,
where normal computation occurs, and the meta-level,
where computation about the system takes place. The
interactions between levels are categorized as reification
(when the meta-level is notified of a change occurring at
the base level), introspection (when the meta-level
observes the base level), and intercession (when the meta-
level modifies the structure or the behavior of the base
level).
These mechanisms are useful for separation of concerns
and have made reflective architectures particularly
attractive to implement non-functional mechanisms such
as fault tolerance and security in more transparent and
more adaptable ways. In the last decade, several projects
have investigated this issue (Maud [9], Garf [10], Friends
[7]). The Friends system for instance is a CORBA-
compliant reflective fault-tolerant platform, based on a
Meta Object Protocol that is built using open compilation
facilities [11]. Today, limited reflection capabilities have
made their way into some of the most popular
development platforms, such as CORBA and Java. This
evolution highlights the increasing attractiveness of
reflection for industry, to dynamically adapt non-
functional requirements. To investigate the benefits and
limitations of these standard reflective facilities, we
describe here how passive replication of CORBA objects

DSN-2004, The Int. Conf. on Dependable Systems and Networks — Florence, Italy —June 28th - July 1, 2004

-4-

can be implemented. This platform is currently being used
to develop other replication strategies and more
importantly to implement reflection at various levels, both
at the middleware and the operating system levels, using
the concept of multi-layer reflection we presented at DSN
2003 [12].

Figure 1. Middleware-based platform

Our prototype platform (see Figure 1) is organized in a
layered architecture that integrates the middleware layers
ORBacus (JORBacus v4.1.2), and Sun’s Java v1.4.1, on
top of the GNU/Linux operating system (Linux 2.4 for
x86).

3. Implementation

Our implementation of the passive replication mechanism
combines Portable Interceptors, to synchronize remote
clients and the different server replicas, and the Java
Serialization mechanisms to obtain the internal state of
application objects.
We use two kinds of Portable Interceptors, according
whether they handle the client or the server side of the
interaction (Figure 2). On the client side, the PIClient
intercepts the outgoing requests issued by clients and
forwards them to the current primary replica. On the
server side, the PIServer has two running modes: primary
and backup. The PIServer handles the processing of
requests, the transfer of request, reply and state
information from the primary to the backup during fault-
free phases, and ensures smooth reconfiguration when one
of the replicas crashes. The PIServer of the primary
delivers requests to the backup replica. We do not assume
the availability of atomic multicast services.
The PIClient and PIServer work together to detect the
crash of the Primary server and switch from the primary to
the backup server. As crash detection is not the primary
focus of this paper, we choose to use a simple client-side
detection scheme that relies on the error detection
mechanisms of the underlying ORB. Clients first discover
crashes when the ORB raises an exception concerning the
connection with the primary. After retrying the request a
given number of times, a client issues its following
requests to the backup replica. When the backup receives
a request from a client, its PIServer checks that the

primary is down by sending a ping request to the primary,
then switches to primary mode. Duplicated requests on the
server side are discarded using a system-wide unique ID.

client PIC

Primary
serverPIS

Backup
serverPIS

IIOP requests

Checkpoints

Performs
Requested
Actions

Handles
checkpoints

ORB

ORB

Serialization Java

Serialization Java

Remote requests through
banking system GUI

ORB
Optional JVM

Figure 2. Architecture with PIClient & PIServer for

primary-backup replication

Using these Portable Interceptors we can observe the
ongoing requests between clients and the server, and
trigger the different stages of the replication protocol
accordingly. However, except for a number of exception-
raising or -resignaling techniques described below,
CORBA’s portable interceptors do not allow requests or
replies to be modified. In addition, a portable interceptor
inherits its concurrency model from the server that it is
attached to. Depending on this concurrency model,
requests can be served either sequentially or in parallel;
this is completely beyond the control of the PIs.
In this context, the only possibilities for controlling
request handling from within a portable interceptor are
either to suspend the current thread, thus blocking the
request, or to throw an exception to prevent the request
from being processed. A portable interceptor can intercept
the sending and the receiving of a request, the reception of
a reply, and the reception of CORBA exceptions. This last
feature can be used to “transform” a CORBA exception,
by propagating a different exception from the intercepted
one (we use this technique, as we shall see).

3.1. Overview of the implementation

The behavior of the client’s interceptor (PIClient) is
shown by the pseudo-code below. The PIClient comprises
three entry points: the send_request method is called
by the ORB before an outgoing request is sent to the
transport layer; the receive_reply method is called
before an incoming request is handed to the application;
and the receive_exception method is called by the
ORB before a CORBA exception is delivered to the
application level.

Linux kernel
API/ libc

JVM
JOrbacus

GUI
client PIC

Power PC
Linux kernel

API/ libc
JVM

JOrbacus

serverPIS

Pentium II

Primary /backup

DSN-2004, The Int. Conf. on Dependable Systems and Networks — Florence, Italy —June 28th - July 1, 2004

-5-

Constructor:
 obtain the primary and backup

references through the name server,
determine the client unique ID

send_request:
 add the request unique ID for the

client to the request (= client
unique ID + request number)

receive_reply:
 increment request counter
receive_exception:
 issue ForwardRequest exceptions to

the primary (twice), then the backup

The core of the client-side interceptor’s role takes place in
the receive_exception method when the ORB
signals that a transient communications error has affected
a message sent to the server. A ForwardRequest is a
special kind of exception that a CORBA server can raise
to redirect a client to a different server. When it detects a
communication error, the client interceptor raises a
ForwardRequest exception to tell the client to reissue
its request (this is a case of exception transformation, as
mentioned earlier). After two consecutive errors from the
primary, the client interceptor assumes that the primary
has failed and redirects further requests to the backup,
thus triggering a primary-backup switch.
On the server side, the primary and backup replicas each
contain a PIServer working in two different modes,
respectively primary and backup mode:
1. In primary mode, the PIServer relays requests to the

primary server for processing, fetches the server’s
internal state after processing (using Java
serialization), and sends a checkpoint to the backup
replica. The checkpoint includes the ID of the
corresponding request, the state information and a
copy of the reply message, if any.

2. In backup mode, the PIServer receives checkpoints
and uses them to update the state of the server replica
using Java serialization. When the backup receives a
primary failure notification, it switches to “primary
mode” and starts processing requests. The unique
request identifier included in both the requests and the
checkpoints is used to avoid processing the same
request twice when the backup switches to primary
mode.

For clarity, we first show the pseudo-code for a scenario
with a single client in the system. The interceptor’s
receive_request method is invoked by the ORB
before a request is transferred to the server object, and the
send_reply method is called before a reply is passed to
the transport layer. The modifications necessary in the
multi-client case are discussed later.
Constructor:
if (primaryRole)
 obtain the reference of the backup
Determine server unique ID

receive_request:
if (primaryRole)
 if first activation of PIServer
 obtain the reference of
 the Primary Server
 /** will be used to issue direct
 requests to the primary, like
 getState for instance **/
else /** backup role **/
 if first activation of PIServer
 obtain the references of the Primary
 and the Backup Servers
 if current request is 'set_state'
 /** fault-free behavior **/
 Backup.set_state(bufferedState)
 bufferedState := primaryState
 bufferedRequestID := requestID
 else /** primary has crashed **/
 primaryRole := true ;
 if (requestID==bufferedRequestID)
 /** re-execution to produce reply

**/
 bufferedState := nil ;
 bufferedRequestID := nil ;
 else /** the received state info

can be applied **/
 Backup.set_state(bufferedState)
 endIf
 endIf
endIf

send_reply:
if(primaryRole)
 state=Primary.get_state()
 backup.set_state(state,<requestID,cli

entID>)

The start of receive_request contains some
reference handling due to the fact that a portable
interceptor is initialized before the CORBA server it is
attached to. Thus, the reference of the primary and the
backup cannot be obtained during the PI’s initialization
and must be obtained afterwards, once the system is
completely initialized.
In the receive_request code, set_state requests
received from the primary are not applied immediately by
the backup. They are buffered until a new set_state
request arrives (in which case they are applied), or until
the backup becomes primary. The set_state requests
must be buffered because an interceptor is not able to
modify a request, and in particular can’t force a request to
return a predefined result (this limitation will be discussed
in Section 4). When the primary crashes, the client and the
remaining backup must reach a common view on when the
crash occurred: (i) while the primary was idle, or (ii) while
a request was being handled, or (iii) just after a
set_state request was sent and before the
corresponding reply goes out. Cases (i) and (ii) are easy to
handle: the backup applies the last set_state request it
received, and takes over the primary’s role. Case (iii) is
more difficult to tackle. In this case, the client re-issues its
request to the backup, although the primary has already
generated a set_state message for this request.

DSN-2004, The Int. Conf. on Dependable Systems and Networks — Florence, Italy —June 28th - July 1, 2004

-6-

Because we can’t impose a result on a request from within
a portable interceptor, the only possibility for the backup
to answer the client is to re-execute its request. For this
reason we must discard the last set_state request that
was received by the backup, otherwise, we would execute
the same request twice, leading to a possible system
inconsistency. This is the rationale for the buffering of
requests.
This buffering technique works correctly in a single-client
case, because in case (iii) the first request received by the
backup necessarily corresponds to the last received
set_state request (we assume that our clients are
single-threaded). The multi-client case is more subtle, and
is discussed in the next section.

3.2. Multi-client implementation
Some difficulties here are inherent to distributed
programming in an asynchronous context, and others arise
from limitations of CORBA’s portable interceptors.
As in the single-client case, in case of failure, the backup
and the remaining clients must agree on when the primary
has crashed to avoid inconsistencies. However, unlike the
single-client case, the backup can't determine with
certainty whether the system is in case (i), (ii) or (iii) of
the above classification. First, the backup can never know
with certainty that it has received all set_state
requests issued before the crash (in the mono client case
this is done by numbering the client's requests and
set_state info). Secondly, when the backup is asked
to become the primary by some client C1, if the last
set_state info it received corresponds to a request
issued by another client C2, the backup can never be sure
whether C2 has obtained its reply [case (i)] or whether C2
is going to contact it again by re-issuing its request
[case(iii)]. In case (i), the backup must apply the
set_state info, or C2 would have seen a future that
would have been lost by the crash, resulting in an
inconsistency. In case (ii), the backup can't apply the
set_state info, otherwise it won't be able to answer C2
without re-executing its request twice (as in the single-
client case), thus also resulting in an inconsistency.
Because we're using TCP/IP connections, which are
asynchronous, these problems are demonstrated to have
no solution that works in all configurations. To solve the
problem, we rely on an implicit synchrony assumption, by
assuming that with a very high probability, messages don't
take longer than a predefined duration to reach their
destination. This means that after a given time window,
the reply issued by the primary has been received by the
client, or that the client has re-sent the request to the
backup. Of course, the use of an atomic broadcast
framework would resolve the problems caused by the
system’s asynchrony by imposing a total order on all
requests. Unfortunately, CORBA portable interceptors
don't support this option, because the communication
primitives used by the ORB cannot be adapted using the
PI mechanisms.

3.3. Application
We have used a simple banking application to assess the
performance of these fault tolerance mechanisms. The
server is a CORBA service that implements the basic
operations needed to operate bank accounts: account
creation, balance of an account, deposit or withdrawal on
an account, transfer between two accounts, etc. The client
accesses the bank service through CORBA requests. We
have compared the latency of client requests in three
different system configurations:

A. The standalone banking application;
B. The banking application together with

“transparent” portable interceptors, in order to
measure interception overhead;

C. A fault-free execution of the banking application
with interceptors implementing the full primary-
backup replication mechanism.

Our experimental testbed comprises hosts with 1GHz i686
processors running Linux 2.4, interconnected over
100Mb/s Ethernet. The client runs on a different host from
the server, and in the fault tolerant configuration the
primary and backup run on the same host. We performed
1000 experiments, each experiment including 1000
invocations (account creation, withdrawal or deposit). We
measured the duration of an experiment and obtained the
results shown in Figure 3.

A. Response time for a remote client

B. Cost breakdown of the DAISY mechanisms

Figure 3. Preliminary performance measurements

Figure 3.A shows response latency (mean, minimum and
maximum values) for configurations A, B and C. The
results show that while the use of “empty” interceptors
only increases response latency by 15%, the addition of

0

2

4

6

8

10

12

14

16

18

Application

FT Algorithms
48%

Serialization
15%

De-serialization
15%

Interception
7%

Application
15%

DSN-2004, The Int. Conf. on Dependable Systems and Networks — Florence, Italy —June 28th - July 1, 2004

-7-

fault tolerance mechanisms in the interceptors
significantly increases overhead. It is worth noting that
our application is very simple, and that the relative cost of
these mechanisms would be considerably lower for a more
realistic application. Figure 3.B shows the breakdown of
this overhead per aspect of the mechanism. Except for the
interception overhead, which is independent of the nature
of the application, most of these costs depend on the size
of the checkpointed state. These variable costs include
serialization of the primary’s state, the transfer of
information for replica synchronization, and the
deserialization of the state on the backup.

4. Discussion

The previous section described the use of Java
serialization and CORBA portable interceptors to
implement a simple replication mechanism. In this
section, we consider the advantages of these basic
reflective mechanisms over more conventional
implementation approaches, and discuss a number of
limitations that they impose.
The JVM Serialization interface provides access to the
internal state of Java objects in a portable format. This
relieves application developers from the task of
implementing this critical aspect of the replication
protocol. We use Java serialization to checkpoint
application objects on the primary and to apply
checkpoints on the backup. In more traditional
approaches, the application programmer would have to
implement (correct!) methods for saving and restoring the
state of the application. However, the state of an
application includes several facets, not only the internal
state of the application objects, but also some external
state that is embedded within the underlying executive
layers [13]. Java serialization deals only with the internal
state, i.e. the attributes of the object. Handling the other
facets calls for more advanced reflective features and
requires a clear understanding of the mapping relations
between application objects, middleware and operating
system data structures.
CORBA portable interceptors enable requests to be
intercepted and processed by the fault-tolerance
mechanisms. The main benefit is that client-server
interactions can be controlled transparently, without
requiring any modifications to the application-level code.
Portable interceptors can be inserted easily without
disturbing the development of application objects and thus
can be changed (at load time only) depending on system
configuration and environmental conditions. Moreover, as
it resides at the ORB level, the interceptor is independent
from the operating system and transport layer. Interceptors
are also independent of the server and client application,
and are therefore portable and reusable.
However, CORBA’s Portable Interceptors have a number
of important drawbacks.

1. PIs cannot modify a request’s input parameters.
Implementing certain non-functional mechanisms, such as
ciphering client-server communications, would require the
ability to modify the parameters of a request, by replacing
them with their ciphered counterpart. However, PIs are
able to piggyback some information along with the
request and are thus able to sign requests.
2. PIs cannot modify a request’s output parameters.
In our implementation, the backup cannot directly apply
the checkpoints it receives to its object. It buffers them
and waits in order to know whether the invoker of the
request corresponding to the checkpoint has received the
reply. When a client has not received its reply, the backup
receives the corresponding request but cannot forge a
reply; it has to re-process the request in order to produce
the reply. The ability to modify output parameters would
simplify this mechanism considerably: the backup could
cache the reply received from the primary and apply the
checkpoint. When receiving the corresponding request
from the client, it would send the reply back without
having to process the request twice.
3. PIs must invoke every request.
The only way to prevent a PI from invoking a request is to
throw an exception that will probably be interpreted as an
error signal at the client side. Some fault-tolerant
mechanisms, such as the leader-follower replication
algorithm, cannot be easily implemented with this
restriction. In a leader-follower configuration, several
replicas receive the requests but only one replies to them.
This would necessitate cheating if implemented with PIs.
4. PIs are not CORBA objects.
PIs cannot communicate with one another directly. In our
implementation, the PI of the primary sends set_state
requests to the Backup server in order to communicate
with the PI of the backup. The backup PI intercepts the
invocation, checks what type of request it is (for the server
or the PI). If it is for the PI, it will throw an exception in
order not to process the request. This trick requires the
server to implement an interface that includes an “empty”
set_state method that is used only by the interceptors.
Likewise, the server must implement an empty ping
method that is used for error detection. These methods
have nothing to do with application-level concerns, but
limitations of interceptor mechanism means that they
become visible to application programmers. This
intrusiveness could be eliminated if interceptors were
CORBA objects: each interceptor would have an object
reference, would be able to implement an interface, and
would be able to communicate with other interceptors.
The fault tolerance mechanisms would be more
transparent for the user and the interceptors would be
easier to develop.
5. PIs don’t have their own thread.
As we mentioned above, each interceptor inherits a
concurrency model from its associated CORBA object.
Whether the object is single- or multi-threaded, the

DSN-2004, The Int. Conf. on Dependable Systems and Networks — Florence, Italy —June 28th - July 1, 2004

-8-

interceptor is only activated by the arrival of an incoming
request; it cannot implement its own event loop. This
means that certain mechanisms, such as periodic “I’m
alive” messages, cannot be easily implemented.
6. PIs cannot reorder requests.
As discussed in section 3.2, handling multiple clients is
very difficult. When the backup PI is switching to the
primary mode, it has to wait for the last request processed
by the former primary in order to decide whether or not to
apply the last checkpoint it received. It might have
received a certain number of requests from other clients in
the meantime, and has to “freeze” them while waiting for
this particular request. This is very difficult with some
ORB threading strategies. A solution would be for
requests to be first class objects, which means being able
to manipulate them as regular objects: passivate, serialize
and forward them [12]. This change would simplify the
development of complex fault-tolerance strategies, but
would require more work at the middleware level when
providing information to the interceptor.

5. Conclusion

This experimental work shows that simple replication
mechanisms can be implemented from basic and
standardized interception and serialization mechanisms,
namely CORBA Portable Interceptors and Java
Serialization. A set of customized Portable Interceptors
could be developed to offer a wide range of fault-tolerance
strategies that could be selected according to the needs of
the application and the infrastructure configuration. It is
worth noting that these mechanisms can be provided in a
non-intrusive manner, transparently to the application
level. However, our work has highlighted a number of
limitations in CORBA’s interceptors. Some of the issues
identified in section 4 could easily be solved by a new
generation of portable interceptors, which would greatly
facilitate the implementation of replication-based fault
tolerance mechanisms. These improvements would be
industrially relevant as these standard executive supports
are now being used in several application domains where
lightweight and non-intrusive implementation of
replicated processing for availability has some merits.
We are currently using the DAISY platform to investigate
the implementation of extended fault tolerance features,
with a focus on wrapping techniques for improved error
detection at the communication level, at the middleware
level, and at the operating system level. Regarding
behavioral and state control at all levels of the system
architecture, we are currently investigating multilevel
reflection, i.e. reflective principles applied to all system
layers, previously presented at DSN’2003 [12].

6. References

[1] OMG, “Common Object Request Broker Architecture
(CORBA/IIOP) 3.0.2,” 2002-12-02, 2002.

[2] Sun, “Java Object Serialization Specification,” Sun
Microsystems, Technical Report November 1998.

[3] CORBA, “Common Object Request Broker
Architecture: Core Specification,” ch.23 Fault Tolerant
CORBA, OMG formal/02-12-06, December 2002.

[4] R. Baldoni, C. Marchetti and A. Termini, “Active
Software Replication throught Three-tier Approach,”
presented at 21st IEEE Symposium on Reliable
Distributed Systems (SRDS2002), Osaka, Japan, 2002.

[5] L. E. Moser, P. M. Melliar-Smith, and P. Narasimhan,
“A Fault Tolerant Framework for CORBA,” presented
at 29th International Symposium on Fault-Tolerant
Computing, Madison, Wisconsin, USA, 1999.

[6] R. Friedman and E. Hadad, “A Group Adaptor-Based
to CORBA Fault-Tolerance,” IEEE distributed systems
online, middleware 2001.

[7] J.-C. Ruiz-García, M.-O. Killijian, J.-C. Fabre, and P.
Thévenod-Fosse, “Reflective Fault-Tolerant Systems:
From Experience to Challenges,” IEEE Transactions
on Computers, Special Issue on Reliable Distributed
Systems, vol. 52, pp. 237-254, 2003.

[8] Pattie Maes, “Concepts and Experiments in
Computational Reflection,” ACM Conference on
Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA'87), pp.147-155, Orlando,
Florida, October 1987.

[9] G. Agha, S. Frolund, R. Panwar, and D. Sturman, “A
Linguistic Framework for Dynamic Composition of
Dependability Protocols,” presented at DCCA-3, 1993.

[10] B. Garbinato, R.Guerraoui and K.Mazouni,
“Implementation of the GARF Replicated Object
Platform,” Distributed System Engineering Journal,
vol2, pp 14-27, 1995.

[11] S. Chiba, “A Metaobject Protocol for C++,” presented
at ACM Conference on Object Oriented Programming
Systems, Languages, and Applications (OOPSLA’95),
Austin, Texas, USA, 1995.

[12] F. Taiani, J.-C. Fabre, and M.-O. Killijian, “Towards
Implementing Multi-Layer Reflection for Fault-
Tolerance,” presented at DSN’2003, The International
Conference on Dependable Systems and Networks,
San Francisco, CA, USA, 2003.

[13] M.-O. Killijian, J.-C. Ruiz-Garcia, and J.-C. Fabre,
“Portable serialization of CORBA objects: a reflective
approach,” presented at 2002 ACM SIGPLAN
Conference on Object-Oriented Programming Systems,
Languages and Applications, OOPSLA 2002, Seattle,
Washington, USA, 2002.

