
Towards Implementing Multi-Layer

Reflection for Fault-Tolerance

François Taïani, Jean-Charles Fabre, Marc-Olivier Killijian

DSN-2003, San Francisco, CA, USA June 22nd-25th

Toulouse, France

2DSN’03

 Context
� Modern systems are large and complex

� many software layers and components

� heterogeneous abstraction levels

� increased use of COTS

� Dependability is orthogonal to all system layers

� Adding fault-tolerance to those systems must be done:

� separately from functional development to address complexity

� encompassing all system layers for maximum coverage

� Our proposal: Multi-Layer Reflection

3DSN’03

Outline

� What is Reflection?

� Why Multi-Layer Reflection?

� Development Approach

� Case Study: Replication of a Multi-Threaded Server

� Conclusion

4DSN’03

What is Reflection?

� separating fault-tolerance from functional concerns

"the ability of a system to think and act about itself"

original system

meta-model
"generic connector"

fault-tolerance

meta-interfaces

meta-level

base-level

observation control

5DSN’03

OS

application

middleware

Why Multi-Layer Reflection ?
� Ad-hoc fault-tolerance in a multi-layer system

5DSN’03

OS

application

middleware

Why Multi-Layer Reflection ?
� Ad-hoc fault-tolerance in a multi-layer system

ad hoc connection
FT code↔original code

ad hoc inter-level

coordination

fault-tolerance

"patches"

6DSN’03

Multi-Layer Reflective Architecture

generic, self-contained meta-interface

OS

application

middleware

fa
u
lt
-t
o
le
ra
n
c
e

meta-

model

aggregation of meta-information

7DSN’03

Multi-Layer Reflective Architecture

� Which information is needed for fault-tolerance?

� How and where to obtain this information?

OS

application

middleware?
fa
u
lt
-t
o
le
ra
n
c
e

8DSN’03

Development Approach

OS

application

middleware

fa
u
lt
-t
o
le
ra
n
c
e

family of

mechanisms
reflective

footprint

instrumentation

of the chosen

architecture

fa
u
lt
-t
o
le
ra
n
c
e

fa
u
lt
-t
o
le
ra
n
c
e

fa
u
lt
-t
o
le
ra
n
c
e

meta-

model

[Multi-Layer Reflective Architecture]

1 2 3

9DSN’03

Obtaining the Reflective Footprint
� Analysis of a family of replication strategies

� primary backup replication

� active and semi-active replication

� Example of reflective features that are needed to
implement the mechanisms of this family:

� state capture (observation)

� state restoration (control)

� request message interception (observation)

� request message dispatching (control)

� non-deterministic decision points

[Development Approach]

10DSN’03

Obtaining the Reflective Footprint

[Development Approach]

Reflective Facets

Communication Execution State

Reification

Introspection

Behavioral Intercession

Structural Intercession

RequestReception

RequestSending

ReplySending

ReplyReception

getRequestContent

getReplyContent

doSend

doReceive

piggyBackDataOnMsg

ExecutionPointStart

ExecutionPointEnd

ExecutionPointReach

NonDeterministicFlowChange

NonDeterministicPlatformCall

getExecutionPoint getServerState

getPlatformState

createExecutionPoint

setExecutionPoint

forceResultOfFlowChange

forceResultOfPlatformCall

setServerState

setPlatformSate

11DSN’03

Instrumentation
� In a multi-component system: Information/control possible

in different layers / abstraction levels

� Higher layers (application, language):

� abstract info / rich semantics

� Lower layers (OS, middleware):

� detailed info / poor semantics

� Goal of our approach:

� to combine the best of both perspectives

� requires understanding of inter-layer coupling

� We developed a reverse-engineering tool to help us
construct model of inter-layer interaction

� helps decide where to insert instrumentation points

[Development Approach]

Student

 Paper

12DSN’03

Case Study:

Replication & Multithreading

� Goal: Transparent replication of a CORBA server

� multi-layer: POSIX (OS) + CORBA (middleware)

� multithreaded: ��concurrent processing of requests

� thread pool: upper limit on concurrency

Client

CORBA

Server

OS

CORBA

OS

re
p
lic
a
tio

n

13DSN’03

Case Study:

Replication & Multithreading

� Goal: Transparent replication of a CORBA server

� multi-layer: POSIX (OS) + CORBA (middleware)

� multithreaded: ��concurrent processing of requests

� thread pool: upper limit on concurrency

� Problem 1: state capture / restoration

� application state

� middleware + OS state

Server

re
p
lic
a
tio

n

CORBA

OS

14DSN’03

Case Study:

Replication & Multithreading

� Goal: Transparent replication of a CORBA server

� multi-layer: POSIX (OS) + CORBA (middleware)

� multithreaded: ��concurrent processing of requests

� thread pool: upper limit on concurrency

� Problem 1: state capture / restoration

� application state

� middleware + OS state

� Problem 2: control of non-determinism

� assumption: multi-threading only source of non-determinism

� how to replicate non-deterministic scheduling decisions?

Server

re
p
lic
a
tio

n

CORBA

OS

15DSN’03

Application Level only
� No guarantee on middleware behavior:

� arbitrary scheduling of requests by middleware

� Replicating scheduling decisions observed in
the application is not enough:

� because of thread pool (for example size 2)

� even with total order-multicast on the network

[Case Study: Replication & Multithreading]

application

C
O
R
B
A

O
S

?

?
network

R
e
p
lic

a
 1

R1
R2R3

R
e
p
lic

a
 2

R2
R�3R1

Q Q�

?

Appli

?

R1R3 R2R1R3 R2

� The decision taken by the middleware regarding

dispatching can't be controlled from the application.

16DSN’03

OS Level Only
� Low level thread synchronization can be controlled:

� The same thread scheduling can be enforced on all replicas

� Requests are dispatched and processed in the same order

� All replicas reache the same state

(assumption: MT = only source of non-determinism)

� But this over-constrains the replicas' execution:

� �impossible to relate OS level activities to request processing

� impossible to distinguish scheduling decisions that influence

determinism and those that do not.

?

?

OS

[Case Study: Replication & Multithreading]

not equivalent ���� replication of every decision

Thread T1

Shared Variable X

R
e
p
li
c
a
 1

R
e
p
li
c
a
 2

Thread T2

17DSN’03

Request R1 Request R2 Request R1

[Case Study: Replication & Multithreading]

Request R2

no need to replicate this scheduling decision

Smart Replication of Scheduling
� With CORBA and application semantics:

� Application and CORBA reflection give ��semantic

to the actions taken by the application.

� This semantic �allows optimal �use of OS level reflection.

� Example: with a thread pool :

� Which thread executes which request does not matter

� The following 2 executions are equivalent:

Thread T1

Shared Variable X

R
e
p
li
c
a
 1

R
e
p
li
c
a
 2

Thread T2

CORBA

Appli

OS

18DSN’03

The Multi-Layer Meta-Model...CORBA
Appli

OS

[Case Study: Replication & Multithreading]

request reception

request in

application

sending of reply

RequestContentionPoint

(OS level synchronization)

RequestAfterApplicationRequestBeforeApplication

request

pre-processing

request

post-processing

...

ReceptionStart

ReceptionEnd

ReplyEnd

ReplyStart

...

� Meta-model centered on the lifecycle of a CORBA request

� aggregates OS-level synchronization and request lifecycle

...

19DSN’03

Middleware Instrumentation
� Behavioral middleware model:

� relates OS level actions to

application level operations

� identifies points of

instrumentation of meta-model

[Case Study: Replication & Multithreading]

19DSN’03

Middleware Instrumentation
� Behavioral middleware model:

� relates OS level actions to

application level operations

� identifies points of

instrumentation of meta-model

[Case Study: Replication & Multithreading]

RequestBeforeApplication

19DSN’03

Middleware Instrumentation
� Behavioral middleware model:

� relates OS level actions to

application level operations

� identifies points of

instrumentation of meta-model

[Case Study: Replication & Multithreading]

RequestBeforeApplication

RequestAfterApplication

19DSN’03

Middleware Instrumentation
� Behavioral middleware model:

� relates OS level actions to

application level operations

� identifies points of

instrumentation of meta-model

[Case Study: Replication & Multithreading]

RequestBeforeApplication

RequestAfterApplication

RequestContentionPoint

20DSN’03

Replication: The Whole Picture
� Behavioral control

� interception of request execution life cycle steps

� non-deterministic contention points can be controlled

� State observation and control

� Middleware state can be recovered by "fast-reexecution"
� re-injection of ongoing requests

� dispatching of active requests to the pool

� "shunting" execution for requests already processed

� Application level state: reuse of other approaches
� language based reflective approach to restore state variable

� platform based approaches to restore OS dependent application
state (e.g. thread stacks)

[Case Study: Replication & Multithreading]

21DSN’03

The Meta-Interface
class Request ;
class Thread ;
class StackChunk ;
class ReifiedEvent ;
class RequestLifeCycleEvent extends ReifiedEvent {

public Request reifiedRequest ;
public Thread reifyingThread ;

}
class BeginOfRequestReceptionextends RequestLifeCycleEvent ;
class EndOfRequestReception extends RequestLifeCycleEvent ;
class RequestBeforeApplication extends RequestLifeCycleEvent ;
class RequestAfterApplicationextends RequestLifeCycleEvent ;
class BeginOfRequestResultSend extends RequestLifeCycleEvent ;
class EndOfRequestResultSend extends RequestLifeCycleEvent ;
class RequestContentionPointsextends RequestLifeCycleEvent ;

class IntercessionCommand ;
class ContinueExecution extends IntercessionCommand ;
class SkipCallToApplication extends IntercessionCommand ;

interface MetaLevel {
IntercessionCommand reifyEventToMetaSynchronous(ReifiedEvent e);

}
interface BaseLevel {

State captureApplicationState ();
void restoreApplicationState (State s);
StackChunk captureApplicationStack (Thread t);
void restoreApplicationStack (Thread t, StackChunk stack) ;
void InjectRequestAtCommuncationLevel(Request r);

}

22DSN’03

Conclusion
� Complex fault tolerant systems :

� Separation of concerns for reusability, adaptability, evolvability

� Observability and controllability over multiple layers required

� Multi-layer reflection

� Consistent and disciplined way to address this problem

� Applicable to complex systems as it enables to master complexity

� This is possible: our case study is a first step… more work to come!

� Recent and on-going work

� DAISY : an adaptive fault tolerant system based on some limited

off-the-shelf reflective mechanisms (CORBA PI, Java Serialization)

� Some observability and controllability problems solved thanks to

the multi-layer reflection concepts (e.g. additional reflective

features introduced into Orbacus and Linux)

23DSN’03

Prospective

� Components and OSS is not enough!

���� « Reflective component model »

standard

interface

meta-interface

meta-

model(S!)component

