Abstract Decentralized topology construction protocols organize nodes along a predefined topology (e.g. a torus, ring, or hypercube). Such topologies have been used in many contexts ranging from routing and storage systems, to publish-subscribe and event dissemination. Since most topologies assume no correlation between the physical location of nodes and their position in the topology, they do not handle catastrophic failures well, in which a whole region of the topology disappears. When this occurs, the overall shape of the system typically gets lost. This is highly problematic in applications in which overlay nodes are used to map a virtual data space, be it for routing, indexing or storage. In this paper, we propose a novel decentralized approach that maintains the initial shape of the topology even if a large (consecutive) portion of the topology fails. Our approach relies on the decoupling between physical nodes and virtual ones enabling a fast reshaping. For instance, our results show that a 51,200-node torus converges back to a full torus in only 10 rounds after 5% of the nodes have crashed. Our protocol is both simple and flexible and provides a novel form of collective survivability that goes beyond the current state of the art. |
Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical work.Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
IEEE Copyright Notice: © 2001-2020 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
complete documentdoi: http://doi.org/10.1109/ICDCS.2014.37 (publisher's link)