
The Impact of Coupling on the Fault-Proneness of
Aspect-Oriented Programs: An Empirical Study
Rachel Burrows∗†, Fabiano C. Ferrari‡, Otávio A. L. Lemos§, Alessandro Garcia† and François Taı̈ani∗

∗School of Computing and Communications – Lancaster University – UK
Email: r.burrows@comp.lancs.ac.uk, f.taiani@lancaster.ac.uk

†Informatics Department – Pontifical Catholic University of Rio de Janeiro – Brazil
Email: afgarcia@inf.puc-rio.br

‡Computer Systems Department – University of São Paulo – Brazil
Email: ferrari@icmc.usp.br

§Department of Science and Technology – Federal University of São Paulo – Brazil
Email: otavio.lemos@unifesp.br

Abstract—Coupling in software applications is often used as an
indicator of external quality attributes such as fault-proneness.
In fact, the correlation of coupling metrics and faults in object-
oriented programs has been widely studied. However, there
is very limited knowledge about which coupling properties in
aspect-oriented programming (AOP) are effective indicators of
faults in modules. Existing coupling metrics do not take into
account the specificities of AOP mechanisms. As a result, these
metrics are unlikely to provide optimal predictions of pivotal
quality attributes such as fault-proneness. This impacts further
by restraining the assessments of AOP empirical studies. To
address these issues, this paper presents an empirical study
to evaluate the impact of coupling sourced from AOP-specific
mechanisms. We utilise a novel set of coupling metrics to predict
fault occurrences in aspect-oriented programs. We also compare
these new metrics against previously proposed metrics for AOP.
More specifically, we analyse faults from several releases of three
AspectJ applications and perform statistical analyses to reveal
the effectiveness of these metrics when predicting faults. Our
study shows that a particular set of fine-grained directed coupling
metrics have the potential to help create better fault prediction
models for AO programs.

I. INTRODUCTION

Effective approaches for fault-prone module detection in
object-oriented (OO) programs are often based on coupling
metrics [1, 2, 3], which quantify the degree of interdependency
between modules [4]. However, the use of coupling measures
to identify faulty modules in Aspect-Oriented Programming
(AOP) [5] is still a daunting task. Even with the establishment
of industry-strength AOP frameworks [6, 7], the detection
of fault-prone modules has rarely been investigated in this
context. The difficulty stems from the fact that core AOP
mechanisms introduce new and intricate forms of inter-module
dependencies. For instance, AOP supports modularisation of
crosscutting code within aspects through method-like ele-
ments, called advices. Differently from methods, advices are
implicitly invoked at specific points of the program execution
(the join points), which are specified in pointcut expressions.
AspectJ [8], an AOP language, also supports intertype declara-
tions that allow to alter module structures, e.g. by introducing
new members such as methods or fields.

Nowadays there is a better understanding of which coupling
properties are good indicators of faults in OO programs.

Therefore, prediction models using coupling metrics can be
used to identify faulty modules early on. In fact, contem-
porary evidence suggests that faults are largely influenced
by particularities of inter-module dependencies established
by the underlying programming mechanisms [1, 2, 3, 9].
For example, industrial studies have pointed out that export
coupling in method calls had stronger association with fault-
proneness than import coupling in OO programs [1, 10].

We need to improve our understanding about the relation-
ships of coupling properties in AOP and their probability
of indicating faulty modules. The problem is that existing
coupling metrics for AOP [11, 12] are direct extensions of the
Chidamber and Kemerer [13] metrics for OO software. Given
the particularities of AOP mechanisms, it is questionable if
extensions of conventional coupling measures are effective
fault-proneness indicators. Also, metrics for AOP [11, 12, 14,
15] are also criticised for being too coarse-grained and not
taking into account subtle dimensions of class-aspect coupling
[14, 16, 17]. They do not consider dependencies established
by specific types of advice or intertype declarations. Moreover,
influenced by previous studies in OO programming [1, 10],
coupling metrics in AOP tend to only quantify export coupling.
Even worse, there is a lack of empirical validation on the
effectiveness of these metrics to indicate fault-prone modules.

In this context, this paper presents an empirical study that
investigates the ability of conventional and novel coupling
metrics (Section III) to identify faulty modules in AOP.
The conventional metrics are extensions of CK metrics used
in previous experimental AOP studies. For the purposes of
our analysis, we have created 20 new coupling metrics that
quantify specific coupling properties of AOP. These metrics
were defined and classified based on Briand et al.’s coupling
measurement framework [18] and its extension to AOP [19].
The objective of our fault-proneness analysis was mainly
twofold: (i) evaluate the effectiveness of fine-grained coupling
measures for specific AOP mechanisms, and (ii) understand
if there is any difference on the performance of import and
export coupling metrics as fault predictors.

We analysed four releases from three applications written
in AspectJ, from which faults and metrics for each module
were collected and documented (Section IV). To carry out a

more precise evaluation (Section V), we used two extensively
used statistical techniques: Spearman’s rank correlation and
logistic regression analysis. Our findings (Section VI) indicate
that certain fine-grained metrics outperform coarse-grained
ones because specific AOP mechanisms have clearly shown
to be more fault-prone than others. For instance, import
coupling metrics for after advice outperformed the majority
of other fine-grained metrics. We also observed that, unlike
in OO programming, import metrics had stronger association
with fault-proneness than export metrics. This indicates that
an aspect affecting many classes may be symptomatic of a
high probability of latent faults. We also discuss our study
limitations (Section VII), related work (Section VIII), and
concluding remarks (Section IX).

II. BACKGROUND

Aspect-Oriented Programming(AOP) [5] aims to improve
the modularity of crosscutting concerns. Such concerns include
exception handling, concurrency and caching as they are often
scattered and tangled across multiple modules in a software
system. AOP aims to extract these concerns from the base
code and modularise them into aspects.

In AOP, advice is a method-like construct that defines
crosscutting behaviour. An advice runs at join points selected
by a pointcut. In AO languages, there are five typical types of
advice: (i) before: runs before the join point; (ii) around: runs
in place of the join point; (iii) after returning: runs after the
normal execution of the join point; (iv) after throwing: runs
after the abnormal execution of the join point; and (v) after:
runs after either the normal or the abnormal execution of the
join point. While advices change the behaviour of modules
they crosscut, the static structure of such modules are modified
by AspectJ’s instructions called intertype declarations (ITD)
and other declare-like forms. ITDs allow the introduction of
members (methods and attributes) into other types. Declare
Parents is used to change the type hierarchy of a system.
Declare Soft, on the other hand, specifies that an exception, if
thrown at a join point, is converted to an unchecked exception.

A number of AOP-specific coupling metrics have already
been proposed [11, 12, 14, 15] and successfully used in
empirical studies of AOP [12, 20, 21]. However, they have
been criticised [14, 16, 17] for not effectively capturing subtle
coupling unique to AO programs that results from the use of
the aforementioned constructs.

One critisism of existing AOP coupling metrics is that they
are too coarse-grained. This is because they measure multiple
sources of coupling at the same time creating a “high-level”
measure. More specifically, they do not separate the coupling
contributions of individual AOP mechanisms, even though the
varied mechanisms might contribute differently to a module’s
overall fault-proneness [17, 14].

Metrics such as Coupling Between Modules (CBM) [11]
demonstrates this. It has a module as its unit of measurement as
well as its granularity. This can be understood by referring to a
simplified definition – CBM is the number of modules possibly
called or accessed from another module. Thus, CBM cannot
distinguish between the individual internal mechanisms that
cause coupling, neither to the varying coupling strength be-
tween modules. Note that, in this paper, we interpret coupling

strength as the frequency of connections between two modules,
despite different definitions that can be found elsewhere [18].

Secondly, existing coupling metrics for AOP tend to over-
look the impact of different coupling directions (locus of
impact). The influence of coupling direction is certainly not
a new concept within the metrics community because there
are important differences between import and export coupling
metrics [4, 18]. For example, different faults can be quantified
depending on the locus of impact of the metric; modules with
high frequency of incoming coupling dependencies (import
coupling) may have a higher probabilities of becoming less
reusable [18] and also manifesting faults within themselves
during evolution. However, modules with a high frequency of
outgoing coupling dependencies (export coupling) may have
a greater chance to cause surrounding dependent modules to
become faulty [22]. Despite this, existing metrics for AOP
tend to overlook the impact of different coupling directions
i.e. most metrics only quantify export coupling [17].

 EC = 2 + ...
 IC = 5 + ...

advices

ExecuteStatementObserver

 EC = 19
IC = 0

GeneralStatement

EC = 0
IC = 14

advices

ErrorContextAspect Legend:

EC: export coupling

IC: import coupling

 join point or ITD-like point

 coupling link

 class or interface

 aspect

 EC = 0
 IC = 1

MappedStatement CacheModel

... ..

 EC = ...
C = ...

XmlSqlMapClientBuilder

14 5

 ...

 EC = ...
IC = 1

declare
parents

11

Fig. 1. Real example of import and export coupling between modules.

Figure 1 demonstrates the different impact that im-
port and export coupling have in AspectJ programs. The
GeneralStatement class is advised by two aspects; it has
19 export couplings as it has 19 join points that trigger
advice in the aspects. However, it has an import coupling
value of 0. We can also see in the ErrorContextAspect
that import coupling is 14 as the advice inside the aspect
is triggered 14 times from the base code; however export
coupling is 0. Within the context of AOP, only utilising and
developing export metrics in empirical studies of AOP is
a dangerous trend that might be overlooking a wealth of
important coupling information. Thus we evaluate the impact
of both types of coupling to understand the behaviour of base-
aspect dependencies in AOP.

Our previous work [23] compared the fault prediction ability
of existing AOP metrics [11] with a novel, combined metric
that takes into account the several coupling forms between as-
pects and the base code. Results showed that metrics that take
into account fine-grained coupling connections created from
aspect-base interactions outperformed the traditional metrics
for predicting faults in AO systems. Such results motivate the
metrics suites we introduce for our analysis in the next section.

III. THE METRICS

We propose 20 new metrics to measure coupling dimensions
unique to AOP (Table II). To the best of our knowledge,

TABLE I
BASELINE METRICS

Name Description Domain of Client Locus of
Measure Item Impact

Depth of Inheritance Tree (DIT) The length of the longest path from a given module to the class/aspect
hierarchy root

class or
aspect

class or
aspect

n/a

Coupling on Advice Execution (CAE) # of aspects containing advices possibly triggered by the execution of
operations in a given module

class or
aspect

aspect export

Coupling between Modules (CBM) # of modules or interfaces declaring methods or fields that are possibly
called or accessed by a given module

class or
aspect

class or
aspect

export

these metrics have not been suggested so far. They focus
on eight AO-specific mechanisms: (i) the behavioural flows
created by five different kinds of advice, and (ii) three types of
structural changes that can be performed by aspects. For each
mechanism, we consider two coupling directions: first, the
coupling induced by an aspect on the rest of the code through
this mechanism, yielding a set of Aspect Coupling Metrics;
and, second, the coupling received by a module (class or
aspect) through this mechanism from all aspects in the system,
yielding a set of Base Coupling Metrics. We complement both
groups of metrics with four summative metrics (see Table II),
summarising either the behavioural (Base Behavioural Cou-
pling and Aspect Behavioural Coupling) or structural coupling
(Base Structural Coupling and Aspect Structural Coupling).

Finally, as a baseline to our study, we chose three
commonly-used metrics that have been applied to AOP pro-
grams (Table I). In the following, we discuss all three groups
of metrics (the baseline metrics in Section III-A, the new
metrics in Section III-B), and provide a formal definition of the
new metrics based on Briand et al.’s framework for coupling
measures [18] (Table II and Section III-C).

A. Baseline Metrics
The first two baseline metrics, Depth of Inheritance Tree

(DIT) and Coupling Between Modules (CBM), are AO metrics
adapted from traditional OO metrics and are frequently used
in experimental studies of AOP languages [17]. They have
presented a strong correlation with fault proneness in OO ap-
plications [1, 24], making them an interesting reference point
against which to compare our set of new metrics. Coupling on
Advice Execution (CAE) is also a popular metric applied in
empirical studies on AOP. Unlike the first two, however, CAE
only measures AO-specific coupling. Full definitions of these
metrics are given in the original paper [11].

B. New Metrics: Base and Aspect Coupling
The metrics we propose are designed to serve two goals:

(i) assess the impact of individual AO mechanisms on fault
proneness; and (ii) compare the respective impact of import
and export coupling for each mechanism.

The first goal is served by considering specific metrics
for each of the eight AOP mechanisms we targeted: five
behavioural mechanisms covering different types of advices
(before, after, after throwing, after returning and around); and
three structural mechanisms (intertype declarations, declare
parents statements, and declare soft statements). The first five
behavioural mechanisms are widely found in AO languages,
including AspectJ, which we used in our experimental study.
The three structural mechanisms are less commonly found, and
tend to be AspectJ-specific, but represent an important class of
crosscutting structural changes. We also designed each metric

to reflect coupling frequency, by counting every time a code
is advised (possibly at the same joint point), rather than just
summing up the number of modules involved in a coupling,
as is often done for popular AO and OO coupling metrics.

The second goal is met by considering two coupling direc-
tions (import or export) for each of these mechanisms, yielding
two groups of metrics, Base Coupling and Aspect Coupling.
Each metric in Base Coupling has a counterpart in Aspect
Coupling that measures the opposite direction of coupling. As
such, the domain of measure in Base Coupling is always a
class or aspect whereas in Aspect Coupling it is always an
aspect. Note that because of the semantic difference between
inheritance-related metrics (measuring structural impact) and
non-inheritance-related metrics (measuring behavioural im-
pact), the locus or impact between structural and behavioural
mechanisms is inverted in each group.

C. Formal Description of the New Metrics

We classified the Base Coupling metrics and the Aspect
Coupling metrics according to Briand et al.’s coupling frame-
work [18]. Table II displays the metric name, description, and
the 12 framework criteria. The values assigned to each metric
are summarised in the bottom of Table II. Next we briefly
discuss the most important points of this formalisation.

The client and server item (Criteria 1 and 2) indicate
the direction of the coupling: from join points to advice for
behavioural mechanisms, and from the structural declaration
to the affected component for structural mechanisms. The
coupling direction is indicated by the locus of impact: from the
server to the client item for export coupling, and conversely
for import coupling. For instance, Base Coupling via Before
Advice measures the number of times a join point triggers
advice in any of the aspects of the system. The direction of
coupling is going out of the module being measured, and is
therefore classified as export.

To better reflect coupling frequencies, as mentioned earlier,
all metrics aggregate individual connections (ID) between
client and server (Criterion 6) instead of counting the number
of distinct items at the endpoints of the connection.

Regarding inheritance (Criterion 11), all metrics partially
account for inherited members. More precisely, members of
a module that are inherited and overridden contribute to
the coupling metrics; however, members that are inherited
but not overridden only contribute to coupling value of the
implementing module. Note that this criteria does not apply
to Base (and Aspect) Coupling via Declare Parents.

Finally Criterion 12 classifies which members can con-
tribute to coupling within a module. Base Coupling and Aspect
Coupling metrics account for coupling between implemented
members. The exception to this rule is Base and Aspect

TABLE II
BASE COUPLING AND ASPECT COUPLING METRICS SUITES.

Name Description 1.
C

lie
nt

Ite
m

2.
S

er
ve

r
Ite

m

3.
P

ha
se

of
ap

pl
ic

at
io

n

4.
Lo

cu
s

of
Im

pa
ct

5.
D

om
ai

n
of

M
ea

su
re

6.
H

ow
is

C
ou

nt
ed

7.
S

er
ve

r
S

ta
bi

lit
y

8.
C

ou
pl

in
g

D
ir

ec
tio

n

9.
In

he
ri

ta
nc

e-
ba

se
d

10
.A

cc
ou

nt
fo

r
Po

ly
m

or
ph

is
m

11
.I

nh
er

iti
ng

ow
ns

in
he

ri
te

d

12
.E

le
m

en
ta

ss
ig

nm
en

t

Base Coupling metrics suite
Base Couping via Before Advice
of module m

of join point shadows in m advised via
before advices

AD JP LLD,
HLD

E CA ID U D N Y P Im

Base Coupling via Around Advice
of module m

of join point shadows in m advised via
around advices

AD JP LLD,
HLD

E CA ID U D N Y P Im

Base Coupling via After Throwing Advice
of module m

of join point shadows in m advised via
after throwing advices

AD JP LLD,
HLD

E CA ID U D N Y P Im

Base Coupling via After Advice
of module m

of join point shadows in m advised via
after advices

AD JP LLD,
HLD

E CA ID U D N Y P Im

Base Coupling via After Returning Advice
of module m

of join point shadows in m advised via
after returning advices

AD JP LLD,
HLD

E CA ID U D N Y P Im

Base Coupling via Declare Parents
of module m

of module hierarchy changes in m
caused by declare parents statements

CA DP LLD,
HLD

I CA ID U D Y n/a n/a Im

Base Coupling via Intertype Declaration
of module m

of module hierarchy changes in m
caused by intertype declaration

CA ITD LLD,
HLD

I CA ID U D Y Y P Im,
Dec

Base Coupling via Declare Soft
of module m

of module hierarchy changes in m
caused by declare soft statements

CA DS LLD,
HLD

I CA ID U D Y Y P Im

Base Behavioural Coupling (BBC)
of module m

The sum of Base Coupling via (i) Before
Advice, (ii) Around Advice, (iii) After
Throwing Advice, (iv) After Advice, and
(v) After Returning Advice for m

AD JP LLD,
HLD

E CA ID U D N Y P Im

Base Structural Coupling (BSC)
of module m

The sum of Base Coupling via (i) De-
clare Parents, (ii) Intertype Declaration,
and (ii) Declare Soft for m

CA DP,
ITD,
DS

LLD,
HLD

I CA ID U D Y Y P Im

Aspect Coupling metrics suite
Aspect Coupling via Before Advice
of aspect a

of join points shadows advised via a
before advice from a

AD JP LLD,
HLD

I A ID U D N Y P Im

Aspect Coupling via Around Advice
of aspect a

of join points shadows advised via an
around advice from a

AD JP LLD,
HLD

I A ID U D N Y P Im

Aspect Coupling via After Throwing Ad-
vice
of aspect a

of join point shadows advised via an
after throwing advice from a

AD JP LLD,
HLD

I A ID U D N Y P Im

Aspect Coupling via After Advice
of aspect a

of join points shadows advised via an
after advice from a

AD JP LLD,
HLD

I A ID U D N Y P Im

Aspect Coupling via After Returning Ad-
vice
of aspect a

of join points shadows advised via an
after returning advice from a

AD JP LLD,
HLD

I A ID U D N Y P Im

Aspect Coupling via Declare Parents
of aspect a

of module hierarchy changes caused
by declare parents statements from a

CA DP LLD,
HLD

E A ID U D Y n/a n/a Im

Aspect Couping via Intertype Declaration
of aspect a

of hierarchical changes caused by
intertype declarations from a

CA ITD LLD,
HLD

E A ID U D Y Y P Im,
Dec

Aspect Coupling via Declare Soft
of aspect a

of module hierarchy changes caused
by declare soft statements from a

CA DS LLD,
HLD

E A ID U D Y Y P Im

Aspect Behavioural Coupling (ABC)
of aspect a

The sum of Aspect Coupling via (i) Be-
fore Advice, (ii) Around Advice, (iii) After
Throwing Advice, (iv) After Advice, and
(v) After Returning Advice for a

AD JP LLD,
HLD

I A ID U D N Y P Im

Aspect Structural Coupling (ASC)
of aspect a

The sum of Aspect Coupling via (i) De-
clare Parents, (ii) Intertype Declaration,
and (ii) Declare Soft for a

CA DP,
ITD,
DS

LLD,
HLD

E A ID U D Y Y P Im

Legend:
1. Client Item: AD = advice; CA = class or aspect 7. Server Stability: S = stable; U = unstable
2. Server Item: JP = join point; DP = declare parents statement; 8. Coupling direction: D = direct; I = indirect

ITD = intertype declaration; DS = declare soft statement 9. Inheritance-base: Y = yes; N = no
3. Phase of application: LLD = low-level design; HLD = high-level design 10. Account for Polymorphism: Y = yes; N = no
4. Locus of Impact: I = import; E = export 11. Inheriting class owns inherited members: P = partially
5. Domain of Measure: CA = class or aspect; A = aspect 12. Assigning items at connection endpoints:
6. How is Counted: ID = individual connections; DE = distinct endpoints Im = implemented attributes contribute to coupling;

Dec = declared attributes contribute to coupling

Coupling via Intertype Declarations as it is possible in AspectJ
to insert a declared method or attribute into a module which
contributes to this metric.

IV. STUDY SETUP

A. Goal Statement and Research Hypotheses

Our goal is to investigate the impact of intricate coupling
dependencies in AO programs upon software fault-proneness,
as stated in Section I. This investigation develops in terms of
two hypotheses H1 and H2, whose null (0) and alternative (1)
definitions are as follows:

a) H1 – coarse-grained versus fine-grained metrics:
• H1-0: There is no difference between the effectiveness of
coarse-grained and fine-grained coupling metrics when used
as indicators of fault-proneness in AO programs.

• H1-1: Fine-grained coupling metrics are more effective
than coarse-grained coupling metrics when used as indi-
cators of fault-proneness in AO programs.

b) H2 – import versus export coupling metrics:
• H2-0: There is no difference between the effectiveness of
import and export coupling metrics when used as indicators
of fault-proneness in AO programs.

• H2-1: There is a difference between the effectiveness of
import and export coupling metrics as indicators of fault-
proneness in AO programs.

B. The Target Systems

To achieve our goals, we evaluated three AOP systems from
different application domains. The first system is iBATIS [25],
a Java-based open source framework for object-relational data
mapping. Over 60 Java releases of iBATIS are available at
SourceForge.net1 and Apache.org2. The second application is
HealthWatcher (HW) [26], a typical Java web-based informa-
tion system. HW was first released in 2002 in both Java and
AspectJ versions, and allows citizens to register, update and
query complaints about health issues through a web client.
The third system is a software product line for mobile devices
called MobileMedia (MM) [20]. MM was originally developed
in 2005 to allow users to manipulate image files in mobile
devices. It has then evolved to 10 Java and AspectJ releases
that support the manipulation of additional media files, such as
audio and video files. Table III shows general characteristics
of the three target systems. For more information about each
of them, the reader may refer to the respective placeholder
websites or to previous reports of these systems [20, 21, 25].

Following recent studies [23, 27], we target four releases
of each system in our evaluation. These releases are iBATIS
01, 01.3, 01.5 and 023, HealthWatcher 01, 04, 07 and 10
and MobileMedia 01, 02, 03 and 06. These releases were
selected as their evolution included a wide range of differ-
ent fine-grained and coarse-grained changes (e.g. refactor-
ings and functionality increments or removals). Moreover,
these systems are rich in different kinds of non-crosscutting
and crosscutting concerns. Along their evolution, a subset
of functional and non-functional crosscutting concerns were

1http://sourceforge.net/projects/ibatisdb/files/ - 23/05/10
2http://archive.apache.org/dist/ibatis/binaries/ibatis.java - 23/05/10
3Original SourceForge builds are #150, #174, #203 and #243, respectively.

TABLE III
TARGET APPLICATIONS.

iBATIS HealthWatcher MobileMedia

Application type data mapper health vigilance product line
framework application for mobile data

Code availability Java/AspectJ Java/AspectJ Java/AspectJ
of releases 60 / 4 10 / 10 10 / 10
Releases considered 4 4 4
Avg. LOC 11,000 6,000 3,000
Avg. # of modules∗ 264 132 39
Avg. # of aspects 46 23 10
Evaluation procedure testing testing interference analysis
∗Interfaces, classes and aspects.

modularised within aspects. Therefore, such applications are
suitable for the study at hand, since we are interested in
faults related to aspectisation (rather than software faults in
general), to better understand the effect of aspect coupling
on fault-proneness. Note that, according to our experimental
goals, we are concerned with analysing systems not necessarily
large but instead with a considerable amount of aspects which
present different forms of coupling with base code. Moreover,
such systems have been recently used in other important AOP
empirical studies [20, 21, 26, 27, 28].

iBATIS is the most complex system among the analysed
ones, which yielded the largest dataset and on which we draw
most of our analyses. On the other hand, HW and MM have
reached higher maturity levels as they have undergone more
corrective and perfective changes. Hence, their stable imple-
mentations resulted in less faults than iBATIS. HW and MM
have also been target of a number of previous studies focusing
on other equally-important quality attributes [20, 21, 26, 28].

C. The Fault Collection
We collected and documented faults from the three systems

by applying varied approaches during the different develop-
ment phases, according to the systems’ characteristics and the
available information. Note that faults were only documented
when they were noticed in the AO version but not in the
OO counterpart. That is, only faults introduced during the
aspectisation of the systems were reported for further analysis.
Table IV summarises the results per system.

TABLE IV
FAULT DISTRIBUTION IN ALL SYSTEMS.

System TotaliBATIS HW MM
Pre-release faults 44 n/a n/a 44
Post-release faults 28 13 9 50
Total 72 13 9 94

Figure 2 depicts the fault distribution according to the
number of modules that contain a specific number of faults.
It considers the total number of faults assigned to a particular
module considering all releases. For example, in iBATIS a
single module contains 17 faults when we sum up releases
01, 01.3, 01.5 and 02, while two modules contain 4 faults.
For some cases in MM, more than one module have been
assigned a common fault, therefore resulting in fault counts
such as 2.5 and 0.5.

iBATIS: iBATIS experienced two testing phases: pre-release
and post-release testing. The former was performed by devel-
opers of AO releases and aimed to produce fault-free code

1 3 1 2 1 6 9

17

6
5

4
3

2
1

iBATIS

of modules

T
ot

al
 #

 o
f

f a
ul

ts

3 7

2

1

HealthWatcher

of modules

2 1 1 2

2.5

2

1

0.5

MobileMedia

of modules

Fig. 2. Fault distribution per module in the target systems.

to be committed to a CVS repository. Developers used the
original test sets from OO implementations as baselines in
this phase. Any fault resulting in abnormal behaviour when
regressively testing the AO implementations was readily re-
ported. In the post-release phase, we extended the original test
sets to increase the code coverage aiming to reveal faults that
were not noticed by the developers. We focused on modules
affected by the aspectisation process, achieving coverages of
at least 80% of the related code [27].

HW: Differently from iBATIS, HW releases experienced
only post-release fault reporting. We then developed a full test
set from scratch, based on the system specification and code
documentation. In order to reduce test effort and avoid sys-
tematic bias during test creation, test cases were automatically
generated with adequate tool support.

MM: Post-release tests of MM revealed faults (mostly
related to data input validation), which were also present
in the OO counterparts. We also evaluated MM using the
Composition Integrity Framework (CIF) [29]. CIF helped us
identify faults caused from aspect interactions established
either between aspects and base code or among aspects.

D. Metrics Collection
All Base Coupling Metrics and Aspect Coupling Metrics

were manually collected using the Cross Reference View in
Eclipse4 as it shows crosscutting information between the
base and aspect code. We accounted for all potential matches
exhibited by the IDE. The three metrics from the Baseline
group were collected using the AOPMetrics tool [30].

E. The Statistical Analysis
We conducted a Spearman’s rank correlation test between

metrics and fault counts per module. To evaluate the correla-
tions, we used Hopkin’s criteria5 to judge the goodness of the
coefficients: less than 0.1 means trivial, 0.1-0.3 means minor,
0.3-0.5 means moderate, 0.5-0.7 means large 0.7-0.9 means
very large, and 0.9-1 means almost perfect.

The commonly accepted Pareto principle6 states that 80% of
the faults occur in 20% of modules in a system. For this reason,
it is important to distinguish between modules that have (i)
extremely high fault count (upper 20%), (ii) low number of
faults, and (iii) no faults. Thus, fault data and each metric
are classified into three groups. The group assignment was

4http://www.eclipse.org/ajdt/ - 23/05/10
5http://www.sportsci.org/resource/stats - 23/05/10
6http://www.gassner.co.il/pareto/ - 24/08/10

decided using the interquartile range of the dataset. The fault
classification algorithm is shown in Figure 3, the same logic
is also followed to classify each metric. We found no need for
separate categories for the lower two quartiles as, due to the
distribution of the data, over half the modules had 0 faults. In
one or two cases where the upper metric quartile was 0 we
followed lines 2-4 to divide the groups and avoid assigning
each value into the same group.

1 I f (3rd Quartile = 0) {
2 I f (# Faults = 0) Classif ication := 0
3 Else I f (# Fault <= 1) Classif ication := 1
4 Else Classif ication := 2
5 }
6 Else {
7 I f (# Faults >= 3rd Quartile) Classif ication := 2 ;
8 Else I f (# Faults >= 2nd Quartile) Classif ication := 1 ;
9 Else Classif ication := 0

10 }
Fig. 3. Data classification algorithm.

To enhance our analysis, we also decided to employ binary
logistic regression analysis to develop fault prediction models
based on the studied metrics. We applied logistic regression
instead of traditional linear regression analysis because of the
lack of variability in the dependent variable (i.e. faults per
module). This test requires the dependent variable to be binary
so we classified the module as “0” for no faults and “1” for
one or more faults. Logistic regression also does not require
other assumptions required by some statistical techniques such
as normally distributed variables or homoscedasticity [31].
Moreover, other studies have shown that logistic regression can
provide suited models for fault-proneness prediction [1, 31].

Historically, significance levels of 0.01, 0.05 and 0.1 have
been used for statistical tests [10, 32]. Although some of our
tests were significant at levels as low as 0.01, we decided
to adopt a significance level of 0.1, mainly motivated by our
sample size, which was not very large. Other studies have also
adopted such p-value threshold [33, 34]. Thus, our analyses
consider p-values below 0.1 significant. For all statistical tests
we used the R language and environment7.

V. RESULTS

A. Coupling Metrics

Table V shows descriptive statistics of each system. We
collected the minimum (min), maximum (max), mean (µ),
standard deviation (σ) and median (med) for each metric
collected from each system. Low µ values and higher σ values
indicate skewed measure distributions. This happens because
a module is usually strongly coupled to only a few other
modules [35]. It also explains why most medians are zero.
The maximum and minimum values are not exact because we
considered averages across all releases of each system.

B. Correlation Rank and Regression Analysis

Table VI presents the Spearman’s rank correlation results
for all metrics. Correlations (i.e. ≥ 0.1 according to Hopkin’s
criteria – see Section IV-E) are highlighted in grey. Note that in
Table VI we used short names or acronyms for the metrics (e.g.
Before in the Base Coupling group stands for Base Coupling
via Before Advice).

7http://www.r-project.org/ - 23/05/10

TABLE V
DESCRIPTIVE STATISTICS RESULTS.

Metric iBATIS HW MM
min max µ σ med min max µ σ med min max µ σ med

Baseline metrics
Depth of Inheritance Tree (DIT) 0 4.0 0.43 0.85 0.00 0 4.0 0.65 0.87 0.00 0 3.0 0.97 1.14 0.83
Coupling between Modules (CBM) 0 47.8 1.78 3.91 1.00 0 29.7 3.04 4.01 1.50 0 14.0 2.51 3.34 1.00
Coupling on Advice Execution (CAE) 0 2.3 0.27 0.53 0.00 0 4.5 0.62 0.86 0.00 0 5.0 0.55 1.03 0.00

Base Coupling metrics
Base Coupling via Before Advice 0 15.3 0.12 1.09 0.00 0 19.8 0.16 1.58 0.00 0 1.0 0.05 0.19 0.00
Base Coupling via Around Advice 0 27.8 0.48 1.86 0.00 0 10.0 0.42 1.28 0.00 0 4.3 0.33 0.86 0.00
Base Coupling via After Throwing Advice 0 7.5 0.31 0.92 0.00 0 14.5 0.10 1.15 0.00 0 4.0 0.11 0.56 0.00
Base Coupling via After Advice 0 5.5 0.03 0.34 0.00 0 3.0 0.20 0.51 0.00 0 4.0 0.16 0.58 0.00
Base Coupling via After Returning Advice 0 2.5 0.02 0.20 0.00 0 18.5 0.12 1.47 0.00 0 2.0 0.10 0.39 0.00
Base Coupling via Declare Parents 0 2.0 0.04 0.20 0.00 0 1.8 0.17 0.42 0.00 0 0.0 0.00 0.00 0.00
Base Coupling via ITD 0 11.0 0.41 1.28 0.00 0 4.0 0.05 0.37 0.00 0 5.0 0.20 0.75 0.00
Base Coupling via Declare Soft 0 7.5 0.31 0.92 0.00 0 30.0 1.02 3.49 0.00 0 10.0 0.38 1.51 0.00

Aspect Coupling metrics
Aspect Coupling via Before Advice 0 12.8 0.72 2.79 0.00 0 18.5 1.00 3.63 0.00 0 1.0 0.27 0.46 0.00
Aspect Coupling via Around Advice 0 49.0 4.06 9.62 0.00 0 24.0 3.11 6.18 0.00 0 4.5 1.15 1.45 1.00
Aspect Coupling via After Throwing Advice 0 6.8 1.47 1.70 0.75 0 14.5 0.59 2.84 0.00 0 4.8 0.33 1.12 0.00
Aspect Coupling via After Advice 0 5.5 0.18 0.77 0.00 0 8.7 1.24 1.17 0.00 0 3.0 0.64 0.95 0.00
Aspect Coupling via After Returning Advice 0 2.3 0.09 0.36 0.00 0 18.5 0.72 3.63 0.00 0 4.0 0.41 1.01 0.00
Aspect Coupling via Declare Parents 0 3.0 0.20 0.54 0.00 0 11.8 1.06 2.59 0.00 0 0.0 0.00 0.00 0.00
Aspect Coupling via ITD 0 45.5 2.87 8.86 0.00 0 4.0 0.33 0.91 0.00 0 10.0 1.23 2.41 0.00
Aspect Coupling via Declare Soft 0 21.8 2.36 3.78 1.00 0 50.8 6.04 12.65 0.00 0 16.5 1.11 3.62 0.00

Table VII shows the results from our regression analysis.
The Coefficient (column coeff) is the estimated regression
coefficient. The stronger the impact of the corresponding
metric on the likelihood of a module presenting a fault, the
larger the absolute value of the related coefficient (positive
or negative according to its signal). The p-value (column p-
v) provides the significance of the corresponding coefficient
and is related to the statistical hypothesis. The (log) odds ratio
(column odds) indicates the relative amount by which the odds
of a module presenting a fault increase or decrease when the
value of the metric is increased by a unit. Similarly to Table
VI, we used short metric names in the first column. We also
highlight results significant at 90% confidence level.

TABLE VI
SPEARMAN’S CORRELATION RANK RESULTS.

Metric iBATIS HW MM
p-v coeff p-v coeff p-v coeff

Baseline metrics

DIT 0.495 -0.04 0.005 -0.22 0.015 -0.29
CBM 0.069 0.10 0.188 0.11 0.002 0.36
CAE 0.702 -0.02 0.017 -0.19 0.087 -0.21

Base Coupling metrics

Before 0.174 0.08 0.487 -0.06 0.485 -0.08
Around 0.743 -0.02 0.078 -0.14 0.276 -0.13
After Throwing 0.431 0.05 0.653 -0.04 0.536 -0.08
After 0.272 0.07 0.134 -0.12 0.366 -0.11
After Returning 0.000 0.29 0.715 -0.03 0.485 -0.09
Declare Parents 0.925 -0.01 0.171 -0.11 n/a* n/a*
ITD 0.883 -0.01 0.559 -0.05 0.366 -0.11
Declare Soft 0.334 0.06 0.000 0.28 0.366 -0.11
BBC 0.687 0.02 0.030 -0.17 0.127 -0.18
BSC 0.754 0.02 0.067 0.15 0.252 -0.14

Aspect Coupling metrics

Before 0.250 0.16 0.973 0.01 0.122 0.34
Around 0.375 -0.12 0.066 0.37 0.706 0.09
After Throwing 0.005 0.37 0.022 0.45 0.621 0.11
After 0.253 0.16 0.543 -0.13 0.041 0.44
After Returning 0.068 0.25 0.022 0.45 0.000 0.83
Declare Parents 0.278 0.15 0.044 -0.40 n/a* n/a*
ITD 0.411 -0.11 0.966 -0.01 0.211 0.28
Declare Soft 0.018 0.32 0.008 0.51 0.793 -0.06
ABC 0.007 0.36 0.063 0.37 0.004 0.60
ASC 0.016 0.32 0.709 0.08 0.429 0.18
* Mobile Media had no Declare Parents occurrences

VI. ANALYSIS

The following subsections discuss our two research hy-
potheses (Section IV-A) in the light of the results of Section V.

A. Coarse- vs Fine-Grained Metrics (H1)
The proposed metrics for base coupling and aspect coupling

are fine-grained in that (i) they measure coupling induced by
individual mechanisms (excluding the four summative metrics
Base Behavioural Coupling, Base Structural Coupling, Aspect
Behavioural Coupling and Aspect Structural Coupling), and
(ii) they take into account coupling frequency by counting each
coupling connection. By contrast, the baseline metrics (Depth
of Inheritance Tree (DIT), Coupling Between Modules (CBM)

TABLE VII
LOGISTIC REGRESSION RESULTS.

Metric iBATIS HW MM
p-v coeff odds p-v coeff odds p-v coeff odds

Baseline metrics

DIT 0.50 -0.38 0.68 0.99 -9.24 0.00 0.99 -17.42 0.00
CBM 0.06 0.49 1.63 0.35 0.36 1.43 0.02 2.30 9.94
CAE 0.75 -0.17 0.84 0.06 -1.38 0.25 1.00 -15.25 0.00

Base Coupling metrics

Before 0.05 0.95 2.58 0.99 -14.36 0.00 1.00 -15.22 0.00
Around 0.77 -0.08 0.92 0.99 -13.54 0.00 0.99 -8.19 0.00
After Throwing 0.62 0.14 1.15 0.99 -14.01 0.00 1.00 -14.02 0.00
After 0.77 -0.08 0.92 0.99 -15.83 0.00 1.00 -15.09 0.00
After Returning 0.99 9.04 >10 1.00 -13.54 0.00 1.00 -8.14 0.00
Declare Parents 0.69 0.25 1.29 0.99 -8.02 0.00 n/a* n/a* n/a*
ITD 0.86 -0.06 0.94 0.99 -13.39 0.00 1.00 -15.59 0.00
Declare Soft 0.31 0.26 1.29 0.00 1.08 2.93 1.00 -14.30 0.00
BBC 0.26 0.14 1.15 0.99 -13.77 0.00 1.00 -14.79 0.00
BSC 0.49 0.13 1.13 0.18 0.32 1.38 1.00 -8.43 0.00

Aspect Coupling metrics

Before 0.39 0.44 1.56 0.84 -0.11 0.89 0.16 0.73 2.08
Around 0.73 -0.13 0.88 0.10 0.82 2.28 0.96 0.03 2.45
After Throwing 0.02 0.89 1.15 1.00 18.14 >10 0.47 0.55 1.73
After 0.04 0.97 2.63 0.55 -0.31 0.74 0.09 0.90 0.00
After Returning 0.17 0.90 2.46 1.00 18.14 >10 0.99 10.32 >10
Declare Parents 0.15 0.63 1.88 0.99 -9.12 0.00 n/a* n/a* n/a*
ITD 0.97 0.02 1.02 0.79 -0.17 0.85 0.44 0.40 1.50
Declare Soft 0.04 0.74 2.10 0.02 1.18 3.27 0.91 -0.07 0.93
ABC 0.01 0.61 1.83 0.08 0.77 2.15 0.02 0.69 1.99
ASC 0.01 0.96 2.60 0.91 0.04 1.04 0.54 0.31 1.36
* Mobile Media had no Declare Parents occurrences

and Coupling on Advice Execution (CAE)) are coarser as they
aggregate individual modules.

Among the baseline metrics, CBM shows the highest corre-
lation with faults, varying from minor in iBATIS to moderate
in MobileMedia. CAE and DIT, however, do not show signifi-
cant correlation. The lack of correlation from DIT is surprising
as large inheritance trees in OO programs have shown to
increase the likelihood of faults in a module [1, 2]. This might
be because none of the target systems contain dangerously
large inheritance hierarchies (max depth of 4), thus hiding the
potential influence of high values of this metric.

Interestingly, the CAE metric shows no significant corre-
lation in any of the applications. This contrasts with new
metrics which also measure coupling between the base and
aspect code, which in fact do show a correlation. If we
consider new metrics such as Base Coupling via both After
Returning Advice (Table VI) and Before Advice (Table VII)
the correlation found here indicates that these AOP constructs
may impact negatively on the fault-proneness of an application
in the presence of high coupling. One explanation for this
difference is that CAE counts the number of aspects involved,
but remains insensitive to the numerous interactions that could
potentially occur between a single aspect and a class.

To illustrate this point, iBATIS contains a class,
GeneralStatement, that is advised 19 times by two aspects
ErrorContextAspect and ExecuteStatementObserver
as seen in Figure 1. Not surprisingly, this intense coupling
between the GeneralStatement class and the two aspects
caused complex interdependencies between the base and as-
pect code. This was reflected in the high fault count for these
modules; In total, 23 faults were associated with them. The
CAE metric, on the other hand, only aggregates 2 connections
as it only counts the number of involved modules, thus not
proportionately representing the fault-proneness in the value.

The Spearman’s correlation presents some interesting pat-
terns in iBATIS, the largest system in our experiment. Aspect
Coupling via After, After Returning, After Throwing and
Around Advice all show correlations with fault-proneness in
at least one application. Within this group, logistic regression
analysis confirms correlations of Aspect Coupling via After
and After Throwing Advice. These metrics all measure advice
with “after” semantics, potentially being more fault-prone than
other types of advice due to additional complexity involved.
For instance, Aspect Coupling via After Throwing and After
Returning Advice show the strongest correlation with faults.
Both mechanisms force developers to consider not only the
advised method, but also ensure that the program semantics
is correctly transferred to the next point of execution. This
can be complex for methods with multiple implicit return
locations. For instance, we found multiple scenarios where an
exception handling aspect advised a single method at multiple
join points. Other aspects that advised the same method, and
even the same join point, added to the complexity.

Finally, among the summative metrics, Aspect Behavioural
Coupling presents the strongest and most consistent levels
of correlation ranging from 0.36 in iBATIS to 0.60 in Mo-
bileMedia. It shows significant results in both Spearman’s
correlation and logistic regression tests across all applications.
This compound metric is the sum of all behavioural import

metrics, four of which are advice with “after” semantics, which
tend to confirm our above discussion.

Our results indicate that certain metrics from Base Coupling
group and, even more so, Aspect Coupling group correlate bet-
ter with faults than the baseline metrics. This may be because
they are more proportionately representative of fault-proneness
in a module than the baseline metrics. In particular, coupling
imposed by after advice shows promising correlations. These
results support the alternative hypothesis H1-1, which states
that finer-grained coupling metrics are more effective than
coarse-grained coupling metrics when used as indicators of
fault-proneness in AO programs.

B. Import vs Export Metrics (H2)
During the evolution of AO applications, both base and

aspect modules are modified, and therefore faults are naturally
distributed amongst both aspects and classes. If we only
measure export coupling via advice, we are quantifying the
number of advices invoked from the base code (or number
of times a base module is advised by aspects). Of course,
these types of metrics do not quantify the number of times
an individual aspect advises the base code modules. In the
following analysis we investigate both import and export
coupling and note key differences with respect to AOP.

1) Behavioural Metrics: We first consider behavioural met-
rics as they show different results within this analysis. Import
behavioural coupling metrics generally outperformed export
metrics. For example, the import metric for Aspect Coupling
via After Throwing Advice shows a moderate correlation (co-
efficient of 0.37) within iBATIS; however its export coupling
counterpart (i.e. Base Coupling via After Throwing Advice)
shows no significant correlation. This is supported by the
logistic regression analysis (Table VII).

Combined metrics show similar results. As previously men-
tioned, (import) Aspect Behavioural Coupling metric shows
significant correlations across all systems. However, when con-
sidering the equivalent export metric – i.e. Base Behavioural
Coupling – Tables VI and VII do not show any significant
correlation or fault prediction ability.

2) Structural Metrics: Regarding the 9 metrics that quantify
structural coupling, Aspect Coupling via Declare Soft within
Health Watcher results shows significant results when consid-
ering both Spearman’s rank correlation (Table VI) and logistic
regression analysis (Table VII), however no correlation can
be found with the other two structural metrics. Despite this,
previous research [27] has supported our findings on how
certain structural mechanisms, such as Declare Soft, can be
particularly fault prone.

Combining the structural metrics together do not increase
the correlation. In fact, when combining the three structural
import metrics the coefficient remains the same, and when
combining the three structural export metrics the coefficient
lessens. Despite this, it is important not to out-rule structural
coupling as an indicator of faults. The community still has
much more to learn about the impact of these constructs, and
in particular with the use of Declare Soft.

The difference in effectiveness between import and export
coupling metrics depends on key metric characteristics. Dif-
ferences between import and export structural coupling were

inconclusive as only Aspect Coupling via Declare Soft showed
significant results. However, most import behavioural coupling
metrics outperformed their export equivalent. Due to these
variations we feel our results support the alternative hypothesis
H2-1 that there is a difference between the effectiveness of
import and export coupling metrics as indicators of fault-
proneness on AO programs.

VII. EXPERIMENT LIMITATIONS

Study limitations are discussed based on the four categories
of validity threats described by Wohlin et al. [36]. For each
category, we list all possible threats and the measures we took
in order to reduce each risk when applicable.

Conclusion validity: (i) random heterogeneity of subjects
– evaluated systems come from different application domains;
and (ii) low statistical power – the analysed data set might not
be large enough to allow for deep statistical analyses. Both
risks could not be totally avoided. However, the heterogeneity
of applications helps to promote the external validity of the
study. Regarding risk (ii), the current lack of fault-related
historical data and the current few options of AO systems
available for evaluation pose an obstacle for in-depth analyses.

Internal validity: (i) ambiguity about direction of causal
influence – the complexity of the aspectised concerns might
have made a system release more faulty than the others;
and (ii) history and maturation – HW and MM systems are
well-known subjects, extensively evaluated and continuously
improved through the last years. Risk (i) cannot be completely
avoided since functionalities commonly differ in complexity.
However, it was reduced since all systems were developed and
revised by experienced programmers. Moreover, systematic
regression testing helped developers preserve the semantics
of the OO counterparts. To reduce risk (ii), we focused our
analyses on iBATIS, which consists in the most recent from all
target systems and yielded the largest data set to be analysed.

Construct validity: We identified a risk related to the
confounding constructs and levels of constructs – different
maturity levels of the investigated systems impacted the num-
ber of revealed faults. This risk could not be avoided due to
the few options of medium-sized AO systems available for
evaluation to date. Such systems present different maturity
levels, including varied types and numbers of faults.

External validity: The major risk here is related to the
interaction of setting and treatment – the evaluated systems
might not be representative of the industrial practice. How-
ever, the heterogeneity of these systems helps to reduce this
risk. They are implemented in AspectJ, which is one of the
representative languages in the state of AOP practice. iBATIS
is a widely-used framework. Even though HW and MM are
smaller applications, they are also heavily based on industry-
strength technologies and have been extensively used and
evaluated in previous research [20, 21, 26, 28]. To conclude,
the characteristics of the selected systems, when contrasted
with the state of practice, represent a first step towards the
generalisation of the achieved results.

VIII. RELATED WORK

Despite the little research into fault-proneness of AO pro-
grams, in this section we summarise pieces of work that we

believe are mostly related to our own. They are distributed in
two categories: (i) studies that investigate internal metrics as
indicators of external quality attributes such as design stability
and maintainability; and (ii) studies that investigate the ability
of internal metrics in predicting faults.

Studies on metrics for AO software: Apart from our
previous research on metrics evaluation with respect to fault-
proneness (described in Section II), other work includes an
evaluation of a subset of Ceccato and Tonella’s metrics [11]
performed by Bartsch and Harrison [16]. The evaluation was
based on a framework for describing coupling mechanisms in
AspectJ and another for theoretical validation of measures.

Shen and Zhao [37] also conducted an empirical study to
evaluate 16 coupling metrics for AO programs. The study
included all Ceccato and Tonella’s metrics [11] and seven
new metrics proposed by the authors. Their new metrics take
into account AOP-specific properties and elements such as
crosscutting degree caused by pointcuts and intertype declara-
tions. Differently from the fine-grained metrics we propose
in this paper, however, Shen and Zhao’s metrics do not
(i) take into account the frequency of coupling connections
between base and aspectual modules (ii) measure coupling
from different types of advice, declare soft or declare parents
statements. Moreover, Shen and Zhao analysed the correlation
between the metrics and other attributes such as LOCC (Lines
of Class Code) and the age of an evaluated release, and
maintainability [14] in an extension of their prior work.

Other studies applied coupling metrics to evaluate the
design stability of AO systems in the presence of evolution,
commonly used as a surrogate measure for fault-proneness.
Greenwood et al. [21] assessed the stability of HW releases us-
ing metrics suites for modularity and change impact analysis,
which comprised separation of concerns, coupling, cohesion
and conciseness attributes. Similar metrics suites were used
by Figueiredo et al. [20] to evaluate the stability of MM.

Metrics as faults predictors: As described in the previous
category, we have recently performed a first empirical inves-
tigation of metrics as fault predictors in AO systems [23].
However, we were not able to identify any other initiative so
far. Nonetheless, one can find a number of recent studies that
investigate the fault-proneness of OO elements as well as the
validation of OO metrics for fault prediction.

For example, Gyimothy et al. [2] applied statistical methods
and machine learning techniques to evaluate the correlation
between CK metrics [13] and fault-proneness of a large open
source OO system (around one million LOC) . Also, Olague et
al. [31] evaluated two other OO metrics suites in terms of fault
predication in six releases of a medium-sized Java open source
system. The subjects of study are six releases of a medium-
sized Java open source system. Differently, however, Olague et
al. performed only statistical analysis and built some statistical
models for fault prediction on top of it. The results of both
studies show that different metrics (e.g. CBO and LOC in [2],
and RFC and WMC in [31]) stood out w.r.t. to faulty classes
prediction in the evaluated systems.

IX. CONCLUSIONS

The analysis of internal software properties as indicators of
external quality attributes such as maintainability and fault-

proneness has been a common practice in software engineer-
ing. In particular, coupling has shown to be an important
indicator of faults in OO programs [1, 2, 3, 9]. However, little
research has investigated the impact of coupling on the fault-
proneness of AO programs. To overcome this, we introduced
a novel suite of fine-grained metrics to analyse structural,
behavioural, import and export coupling originated from the
use of various AOP-specific constructs. The effectiveness of
these metrics against existing metrics as fault indicators was
also investigated based on the analysis of three AO systems.

Results showed initial evidence that specific fine-grained
sources of AO-related coupling have a greater impact on
fault-proneness which was not captured by coarse-grained
metrics such as CAE and CBM [11]. Moreover, the proposed
Aspect Behavioural Coupling metric – a combination of import
advice-related metrics – showed that behavioural coupling
sourced from advice mechanisms was the best fault-proneness
indicator amongst all investigated metrics. Amongst the exist-
ing Baseline metrics, only Coupling Between Modules showed
significant though minor correlations with the number of
faults in the applications. One of the potential downfalls with
existing metrics is that they do not take into account the new
and intricate dependencies introduced by AOP mechanisms,
and thus are less proportionately representative of the impact
of coupling upon fault-proneness.

The contributions of this paper show how sources of
AOP-specific coupling impacts on the external quality of
AO software. We feel these results might aid programming
language designers in future developments of AOP languages.
These results also motivate future refinements of these metrics
including a stronger controlled assessments. To broaden our
analysis on this topic future work also includes the assessment
of alternative measures (such as network analysis [38]).

ACKNOWLEDGEMENTS
The authors received the following financial support: Rachel

Burrows: UK EPSRC grant; Fabiano Ferrari: FAPESP (grant
05/55403-6); Otávio Lemos: FAPESP (grant 2008/10300-3);
Alessandro Garcia: FAPERJ (distinguished scientist grant E-
26/102.211/2009), CNPq (productivity grant 305526/2009-
0 and Universal Project grant number 483882/2009-7), and
PUC-Rio (productivity grant).

We would like to thank Andrew Camilleri from Lancaster
University (UK), Eduardo Figueiredo from UFMG (Brazil)
and Nélio Cacho from UFRN (Brazil) for their help while
analysing the MobileMedia and HealthWatcher systems.

REFERENCES
[1] K. El Emam, W. L. Melo, and J. C. Machado, “The prediction of faulty

classes using object-oriented design metrics,” Journal of Systems and
Software, vol. 56, no. 1, pp. 63–75, 2001.

[2] T. Gyimóthy, R. Ferenc, and I. Siket, “Empirical validation of object-
oriented metrics on open source software for fault prediction,” IEEE
Trans. Soft. Eng., vol. 31, no. 10, pp. 897–910, 2005.

[3] R. Subramanyam and M. Krishnan, “Empirical analysis of CK met-
rics for object-oriented design complexity: Implications for software
defects,” IEEE Trans. Soft. Eng., vol. 29, no. 4, pp. 297–310, 2003.

[4] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach. PWS Publ. Co., 1998.

[5] G. Kiczales et al., “Aspect-oriented programming,” in ECOOP’97.
Springer, 1997, pp. 220–242 (LNCS 1241).

[6] “JBoss AOP,” http://www.jboss.org/jbossaop/docs/index -23/05/10.
[7] R. Johnson et al., “Spring - Java/J2EE application framework,” Inter-

face21 Ltd., Reference Manual V. 2.0.6, 2007.

[8] G. Kiczales et al., “Getting started with AspectJ,” Communications of
the ACM, vol. 44, no. 10, pp. 59–65, 2001.

[9] A. B. Binkley and S. R. Schach, “Validation of the coupling de-
pendency metric as a predictor of run-time failures and maintenance
measures,” in ICSE’98, 1998, pp. 452–455.

[10] L. Briand, P. Devanbu, and W. L. Melo, “An investigation into coupling
measures for C++,” in ICSE’97. ACM, 1997, pp. 412–421.

[11] M. Ceccato and P. Tonella, “Measuring the effects of software aspecti-
zation,” in WARE Workshop, 2004.

[12] C. Sant’Anna et al., “On the reuse and maintenance of aspect-oriented
software: An assessment framework,” in SBES’03. Brazilian Com-
puter Society, 2003, pp. 19–34.

[13] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Trans. Soft. Eng., vol. 20, no. 6, pp. 476–493, 1994.

[14] H. Shen, S. Zhang, and J. Zhao, “An empirical study of maintain-
ability in aspect-oriented system evolution using coupling metrics,” in
TASE’08. IEEE, 2008, pp. 233–236.

[15] J. Zhao, “Measuring coupling in aspect-oriented systems,” in MET-
RICS’04 (Late Breaking Paper), 2004.

[16] M. Bartsch and R. Harrison, “An evaluation of coupling measures for
AspectJ,” in LATE Workshop. ACM, 2006.

[17] R. Burrows, A. Garcia, and F. Taı̈ani, “Coupling metrics for aspect-
oriented programs: A systematic review of maintainability studies,” in
ENASE’09. Springer, 2009.

[18] L. C. Briand, J. W. Daly, and J. Wüst, “A unified framework for
coupling measurement in object-oriented systems,” IEEE Trans. Soft.
Engineering, vol. 25, no. 1, pp. 91–121, 1999.

[19] T. T. Bartolomei, A. Garcia, C. Sant’Anna, and E. Figueiredo, “Towards
a unified coupling framework for measuring aspect-oriented programs,”
in SOQUA’06. ACM, 2006, pp. 46–53.

[20] E. Figueiredo et al., “Evolving software product lines with aspects: An
empirical study on design stability,” in ICSE’08. ACM, pp. 261–270.

[21] P. Greenwood et al., “On the impact of aspectual decompositions on
design stability: An empirical study,” in ECOOP’07. Springer, 2007,
pp. 176–200 (LNCS 4609).

[22] S. Yacoub, H. Ammar, and T. Robinson, “Dynamic metrics for object
oriented designs,” in METRICS’99. IEEE, 1999, pp. 50–61.

[23] R. Burrows, F. Ferrari, A. Garcia, and F. Taı̈ani, “An empirical eval-
uation of coupling metrics on aspect-oriented programs,” in ICSE
WETSoM Workshop, 2010, pp. 53–58.

[24] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-
oriented design metrics as quality indicators,” IEEE Trans. Soft. Engi-
neering, vol. 22, no. 10, pp. 751–761, 1996.

[25] “iBATIS,” http://ibatis.apache.org/ - 23/05/10.
[26] S. Soares, E. Laureano, and P. Borba, “Implementing distribution and

persistence aspects with AspectJ,” in OOPSLA’02. ACM, 2002.
[27] F. C. Ferrari et al., “An exploratory study of fault-proneness in evolving

aspect-oriented programs,” in ICSE’10. ACM, 2010, pp. 65–74.
[28] R. Coelho et al., “Assessing the impact of aspects on exception flows:

An exploratory study,” in ECOOP’08. Springer, 2008, pp. 207–234.
[29] A. Camilleri, G. Coulson, and L. Blair, “CIF: A framework for manag-

ing integrity in aspect-oriented composition,” in TOOLS’09. Springer,
2009, pp. 18–26 (LNBIP v.33).

[30] “AOP Metrics,” http://aopmetrics.tigris.org/ - 23/05/10.
[31] H. M. Olague et al., “Empirical validation of three software metrics

suites to predict fault-proneness of object-oriented classes developed
using highly iterative or agile software development processes,” IEEE
Trans. Soft. Engineering, vol. 33, no. 6, pp. 402–419, 2007.

[32] P. Mohagheghi, R. Conradi, O. M. Killi, and H. Schwarz, “An empirical
study of software reuse vs. defect-density and stability,” in ICSE’04.
IEEE, 2004, pp. 282–292.

[33] O. Laitenberger and J.-M. DeBaud, “Perspective-based reading of
code documents at Robert Bosch GmbH,” Information and Software
Technology, vol. 39, no. 11, pp. 781–791, 1997.

[34] M. Zhao, C. Wohlin, N. Ohlsson, and M. Xie, “A comparison between
software design and code metrics for the prediction of software fault
content,” Inf. and Soft. Technology, vol. 40, no. 14, pp. 801–809, 1998.

[35] L. C. Briand, J. Wüst, and H. Lounis, “Using coupling measurement
for impact analysis in object-oriented systems,” in ICSM’99. IEEE,
1999, pp. 475–482.

[36] C. Wohlin et al., Experimentation in Software Engineering: an Intro-
duction. Kluwer, 2000.

[37] H. Shen and J. Zhao, “An evaluation of coupling metrics for aspect-
oriented software,” Center for Soft. Eng., SJTU, Shanghai - China,
Tech. Rep. SJTU-CSE-TR-07-04, 2007.

[38] T. Zimmermann and N. Nagappan, “Predicting defects using network
analysis on dependency graphs,” in ICSE’08. ACM, pp. 531–540.

