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Abstract 

Automatic program verification belongs to the old quests of software 
engineering, and theoretic computer science. Though any definitive 
solution is fundamentally excluded due to theoretical considerations, 
some partial yet promising answers could be proposed so far, in 
particular Model-Checking.  

At the same time, Object Orientation has firmly established itself among 
practitioners as one of the most relevant programming paradigms. 
In this report, we address the connection between Model-Checking and 
Object-Orientation from a tool perspective. 

In a first part we try to give an overview of today’s model checking state 
of the art with three representative tools among the most popular ones: 
SPIN, SMV and KRONOS. We introduce the spirits, the concepts, and the 
domain of application of each tool. 

In a second part, we move on to higher-level frameworks: vUML, 
UMLAUT and Bandera. Those tools take profit of the "pure" model-
checking engines presented before to allow the verification of Object 
Oriented Models. Among them, we identify 2 main approaches we refer 
respectively to as the preventive and the pragmatic one. We conclude 
with some considerations about the practical use of Model Checking 
methods.  
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6.2 URLs...................................................................................................................................... 30 

2 Introduction 

The ability to check software and more generally systems against known requirements is a corner 
stone of any sound system engineering practice. In this context, the use of formal verification methods 
has been studied for several decades now as a promising mean to improve software quality. More 
particularly in the field of reactive systems, formal methods have been successfully applied to detect 
insidious flaws in a variety of complex systems, from communication protocols, to embedded systems, 
cryptography, and hardware design.  

Model Checking [Merz00] and Theorem Proving [Rush00] are the two main approaches for the formal 
verification of discrete reactive systems in use today. In both cases, a model of the system is built, 
commonly as a discrete state / transition system. At this stage, the whole state / transition structure of 
the system is usually not explicitly expressed in the model. Rather, It is implicitly present through the 
description of each of its concurrent components. Besides the very description of the model, an ad hoc 
formalism allows the modeler to express properties on the model. The differences between Theorem 
Proving and Model Checking mainly lie in the automation degree of the verification process as well as 
in the nature of the properties that can be checked. 

Theorem Provers usually cooperate interactively with the user to help build a mathematical proof of the 
considered property. Though success is not guarantied, a large range of properties may be considered 
and infinite systems are inherently allowed by the method. 

Model Checking on the other hand is restricted in its classical form to finite state systems, and 
decidable logics. Model Checkers are normally fully automated, and given unlimited memory space 
and time necessarily produce a result. The practical limitation of model checking comes from the well-
known state explosion problem, i.e. the exponential growth of the state space of a distributed model 
with respect to the number of its concurrent components. 

A variety of tools have been implemented for Model Checking since the early days of formal 
verification, some of them going back to the beginning of the 80s. The research in this field has 
profited by the attention of a large community, who constantly improves the theoretical framework and 
the available tool set. In this report we try to give an overview of some the model checkers freely 
available today, in particular in connection with object oriented concepts. Naturally, the number of 
implemented model checkers would have been too large for our study. Because of our particular focus, 
we’ve chosen to present in a first time some of the best-known model checkers (Section 3: “Pure” 
Model-Checking). In a second time, we investigate some of the approaches combining object-
orientation and model checking (Section 4: Connecting OO and Model-Checking). We then conclude 
on the general evolution of object-oriented model-checking approaches. 

3 “ Pure”  Model-Checking 

3.1 Introduction 

In this section we are interested in Model-Checking in its “pure” understanding, as opposed to multi-
level approaches, that we discuss in a second section (4 Connecting OO and Model-Checking). Of 
course, one can hardly speak of any “pure” Model-Checking, since a wide variety of techniques and 
approaches have been proposed and keep being proposed to the model-checking problem. We focus 
here on Model-Checking engines, which target performance and scalability. In this sense, these tools 
are more concerned with state-space compression and on-the-fly traversals that with ergonomics and 
conviviality. As such they may be qualified as “pure” Model-Checkers. 

For this part, we have selected three model checkers among the most popular. Each of them 
exemplifies a certain philosophy, and spirit. The first one, SPIN, certainly the one with the longest 
history, specifically targets the verification of distributed software. The second one we look at, SMV, is 
more focused on hardware design, and was one of the first model checkers to introduce bridges to 
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some theorem proving concepts. The last one, KRONOS, is a representative of dense time model 
checkers. 

3.2 SPIN 

3.2.1 Introduction 

SPIN [Holz97] is a model checker that has been developed at the Computer Science Research Center 
of the Bell Laboratories. Historically SPIN goes back to the beginning of the 80’s when the Bell Labs 
Formal Method Group started working on automatic protocol verification. Since then the tool has been 
constantly improved and extended with the leading model-checking technologies. SPIN uses the 
modeling language PROMELA (Process Meta Language) for the model description. PROMELA is an 
abstracted process description language, which focuses on inter-process communication. In particular 
PROMELA allows asynchronous process modeling. 

According to the SPIN Web-Site at the Bell Laboratories, the following features are the distinctive 
characteristics of SPIN compared to other model checkers: [*Spin00] 

• SPIN explicitly targets software verification. 
In particular the PROMELA language directly supports standard process synchronization 
constructs like rendezvous, buffered-message passing, and shared memory. SPIN also allows 
dynamic process creation and destruction. 

• SPIN uses an on-the-fly state-space construction. Only the state-subspace relevant to the 
considered property is explored. 

• SPIN fully integrates the Linear Temporal Logic (LTL) as formalism for input requirement. 

• SPIN offers both exhaustive and partial proof techniques. 

• SPIN uses partial order and optionally BDD-like storage for state-space reduction. 

[Holz97] gives a very good overview of the tool architecture and functionalities. In the remainder of this 
section we will only give a basic introduction to the SPIN concepts, and spirit. Interested readers are 
referred to that first article for more details. 

3.2.2 Processes 

The first step when using SPIN consists in building a PROMELA model of the system one wants to 
check. The building bricks of a PROMELA description are processes and process types. Processes are 
instantiations of process types in the same way objects are instantiations of classes. (Though no 
object-oriented features like inheritance and polymorphism are included in PROMELA.) 

 
proctype MyProcessType() 
{ 
  bit internalState = 0; 
  internalState = 1; 
  printf("myInternalState:%d\n",internalState); 
} 

Figure 1: A simple process type definition in PROMELA 

Figure 1 shows the definition of a simple process type in PROMELA. Instantiations of this process type 
have one local variable internalState, which is initialized to 0 and then set to 1. The process then 
terminates. For a PROMELA model to be executable, SPIN needs some entry point where some 
processes are instantiated. This is done in a default process called init, which is something like the 
main procedure of a C program. 
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proctype MyProcessType() 
{ 
  bit internalState = 0; 
  internalState = 1; 
  printf("myInternalState:%d\n",internalState); 
} 
 
init  
{ 
  run MyProcessType() 
} 

Figure 2: A small executable PROMELA model 

Figure 2 shows a complete PROMELA model using the Process Type of Figure 1. The run keyword in 
the init process is used to create a running instance of MyProcessType. When run in simulation 
modus on this model, SPIN produces the following output (warnings and some minor output were 
omitted, process names are highlighted): 

  0: proc - (:root:) creates proc 0 (:init:) 
  1: proc 0 (:init:) creates proc 1 (MyProcessType) 
  1: proc 0 (:init:) line 10 "pan_in" (state 1) [(run MyProcessType())] 
  2: proc 1 (MyProcessType) line  4 "pan_in" (state 1) [internalState = 1] 
  3: proc 1 (MyProcessType) line  5 "pan_in" (state 2) [printf(...)] 
  3: proc 1 (MyProcessType) terminates 
  3: proc 0 (:init:) terminates 
2 processes created 

Figure 3: Simulation Output of SPIN for the Model of Figure 2. 

3.2.3 Channels 

The communication paradigms of Promela are inspired from Hoare’s CSP language [Hoare85]. As in 
CSP, PROMELA Processes can communicate through channels. A PROMELA channel is primarily a 
typed FIFO list. By default, any process that can see the channel (because the channel is global, or 
because it was passed as a parameter) may concurrently either write or read on the channel. 

 
#define SIZE_OF_CHANNEL 10 
 
chan channelFromInitToMyProcess = [SIZE_OF_CHANNEL] of {bit} 

Figure 4: Example of a Channel Definition 

Figure 4 shows the declaration of a channel channelFromInitToMyProcess, with a maximal 
capacity of 10 messages of type bit. This means that up to 10 messages containing a bit value each 
may be buffered in that channel. If channelFromInitToMyProcess is defined as a global channel, 
any process may write bit values to it with the ! operator. 

 
init  
{ 
  run MyProcessType(); 
  channelFromInitToMyProcess!0 
} 

Figure 5: Init Process writes a 0 to channel channelFromInitToMyProcess 

Figure 5 gives an example of the init process writing a 0 to the channel 
channelFromInitToMyProcess. In case the channel is full, writing to the channel is a blocking 
instruction: the writing process is blocked until some channel cells are freed through a symmetric read 
operation. A read is done with the ? operator.  
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proctype MyProcessType() 
{ 
  bit internalState = 0; 
  channelFromInitToMyProcess?0; 
  internalState = 1; 
  printf("myInternalState:%d\n",internalState) 
} 

Figure 6: Instances of MyProcessType wait for a 0 value on the channel  
channelFromInitToMyProcess before proceeding to internalState 1. 

Figure 6 shows an example of a read operation on channel channelFromInitToMyProcess. 
Similarly to write operations, a process reading from an empty channel is blocked until a message is 
sent on the channel. Figure 6 put a further constraint on the read operation: 
channelFromInitToMyProcess?0 requires the read message to contain the bit value 0. If a 1 is 
the next value to be read instead, then the MyProcessType instance is blocked and can’t proceed 
further. The 1 value has to be consumed by an other process for the channel 
channelFromInitToMyProcess not to be blocked itself. 

If we put the pieces presented in Figure 4, Figure 5, and Figure 6 together, we get the executable 
PROMELA model of Figure 7. 

 
#define SIZE_OF_CHANNEL 10 
 
chan channelFromInitToMyProcess = [SIZE_OF_CHANNEL] of {bit} 
 
proctype MyProcessType() 
{ 
  bit internalState = 0; 
  channelFromInitToMyProcess?0; 
  internalState = 1; 
  printf("myInternalState:%d\n",internalState) 
} 
 
init  
{ 
  run MyProcessType(); 
  channelFromInitToMyProcess!0 
} 

Figure 7: An instance of MyProcessType receives a 0 value through channelFromInitToMyProcess 

After a simulation run within the graphical environment XSPIN of the SPIN distribution, the model of 
Figure 7 generates the following output (the abbreviations p. for proc and st. for state were used 
for place reasons): 

 
  0: p.- (:root:) creates proc 0 (:init:) 
  1: p.0 (:init:) creates proc 1 (MyProcessType) 
  1: p.0 (:init:) line 15 "pan_in" (st.1) [(run MyProcessType())] 
  2: p.0 (:init:) line 16 "pan_in" (st.-) [values: 1!0] 
  2: p.0 (:init:) line 16 "pan_in" (st.2) [channelFromInitToMyProcess!0] 
  3: p.1 (MyProcessType) line  8 "pan_in" (st.-) [values: 1?0] 
  3: p.1 (MyProcessType) line  8 "pan_in" (st.1) [channelFromInitToMyProcess?0] 
  4: p.1 (MyProcessType) line  9 "pan_in" (st.2) [internalState = 1] 
  5: p.1 (MyProcessType) line 10 "pan_in" (st.3) [printf(...)] 
  5: p.1 (MyProcessType) terminates 
  5: p.0 (:init:) terminates 
2 processes created 

Figure 8: Output generated from the Model of Figure 7 
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XSPIN also generates the following message sequence chart, showing message communication and 
process creation and termination. (See Figure 9.) 

 

Figure 9: Message Sequence Chart Generated by XSPIN from the Model presented in Figure 7. 

3.2.4 Indeterminism 

In this small example, there is only one instance of MyProcessType and thus no conflict between 
different processes with respect to a unique channel resource. In the general case though, several 
processes may write and read concurrently to and from a channel. Because of that they may come in 
an access conflict situation. In the PROMELA semantics, such conflicts are random choice points: Any 
evolution of the system in which one of the conflicting process is selected for proceeding is a legal 
evolution. Of course, in a given simulation run, only one particular evolution among the many possible 
ones can be explored. Nevertheless, when checking a property, all possible behaviors relevant for the 
considered property are taken into account. 

Channel conflicts are not the only possible source of indeterminism in a PROMELA model. Shared 
variables may be as well. Indeterminism may even be explicitly built in a model with dedicated 
constructs inspired from Dijkstra’s guarded command language. This ability to model indeterminism is 
a central feature of PROMELA, since it allows the modeling of unpredictable or little known environments 
(faulty components, delayed channels, unknown task scheduling policy, unknown user behavior, and 
so on), which is essential in order to test the robustness of a system. 

3.2.5 Loops 

Another important feature is the possibility to model infinite loops in the model. Actually, most systems 
concerned by PROMELA can be regarded as infinitely cyclic systems, once abstracted from the specific 
start and termination phases. 

 
init  
{ 
  run MyProcessType(); 
  do 
    :: channelFromInitToMyProcess!0 
    :: channelFromInitToMyProcess!1 
  od; 
} 

Figure 10: A non-deterministic cyclic version of the init process 

Figure 10 shows a new version of the init process, in which infinitely many 0s and 1s are randomly 
written on the channel channelFromInitToMyProcess. The infinite loop is realized with the 
do...od; construct, in which each alternative begins with ::. 
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proctype MyProcessType() 
{ 
  bit internalState = 0; 
  do 
    :: channelFromInitToMyProcess?0; 
       internalState = 1; 
    :: channelFromInitToMyProcess?1; 
  od; 
} 

Figure 11: the cyclic version of MyProcessType matching the init process of Figure 10. 

Figure 11 presents the cyclic version of MyProcessType matching the cyclic production of 0s and 1s 
by the init process of Figure 10. This time the do..od; loop contains no indeterminism since the 
next message in the channel is either a 0 or a 1 but in no case both simultaneously. (Note that both 
alternatives may be blocked at the same time if the channel is empty.) 

3.2.6 Model Checking with SPIN 

If we let a simulation run randomly with the model of Figure 10, and Figure 11, we may get a message 
sequence chart like the one on Figure 12. Such a simulation usually never ends. When a system with 
cyclic components actually ends, the particular end-state most of the time corresponds to a deadlock. 
SPIN directly supports search for deadlocks, by checking if any global system state may be reached 
from which no further evolution is possible. Except for particular cases a deadlock indicates a system 
flaw. 

Another type of relevant faulty behaviors are live-locks, in which the system get caught in some infinite 
idle loop. Of course, SPIN can’t differentiate live-locks from normal cyclic runs without any further 
information about the model. This extra information is added to the model with the progress keyword, 
which should label process states in which the system “actually does something”. From a model 
annotated with progress labels, SPIN is able to identify system loops with no progress states, which 
correspond to live-locks. 
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Figure 12: Random simulation with the model from Figure 10 and Figure 11 

Dead-locks and live-locks are standard flaws one is interested in when verifying a model. SPIN further 
allows the user to specify more specific requirements in Linear Temporal Logic. This logic permits 
building formulae over runs of the system. Given a LTL formula and a run, either the run fulfills the 
formula or not. A system verifies a LTL formula if all its possible runs verify the formula themselves. 
The basic building bricks of an LTL formula are atomic state propositions. For example 
(internalState==0) characterizes all system states in which the variable internalState equals 
0. LTL further offers the quantifiers “eventually” which is noted <> in SPIN, and its dual form “always”, 
which in noted []. For example, a requirement that every run of the system should eventually lead to a 
state in which internalState is equal to 1 is expressed by: 

<>(internalState==1) 

The requirement that within every run, internalState should be infinitely often equals to 0 and 
infinitely often equals to 1 is expressed by (&& means and): 

[] ( (<>(internalState==1)) && (<>(internalState==0)) ) 

If we test the above property on the PROMELA model presented in Figure 10 and Figure 11, we get a 
counter example violating the property (Figure 13), in which init only produces 1, and thus 
internalState always stays at 0. 

 
 2: p. 0 (:init:) line 17 "pan_in" (st.1) [(run MyProcessType())] 
 4: p. 0 (:init:) line 20 "pan_in" (st.-) [values: 1!1] 
 4: p. 0 (:init:) line 20 "pan_in" (st.3) [channelFromInitToMyProcess!1] 
<<<<<START OF CYCLE>>>>> 
 6: p. 0 (:init:) line 20 "pan_in" (st.-) [values: 1!1] 
 6: p. 0 (:init:) line 20 "pan_in" (st.3) [channelFromInitToMyProcess!1] 
 8: p. 0 (MyProcessType) line 11 "pan_in" (st.-) [values: 1?1] 
 8: p. 0 (MyProcessType) line 11 "pan_in" (st.3) [channelFromInitToMyProcess?1] 

Figure 13: Counter example for formula [] ( (<>(internalState==1)) && (<>(internalState==0)) )  
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3.2.7 Distribution, Reusability 

The present introduction to SPIN is based on the Version 3.3.10 of the SPIN distribution. SPIN is 
available on UNIX, Windows 95/98 and NT. SPIN itself comes in a command line version, which 
generates ANSI-C code from a PROMELA model. The C code generated implements a dedicated 
program which depending on the options passed to SPIN either simulates or checks the model against 
a certain property. Once compiled this C program returns its results in a plain ASCII format. 

Because of this, SPIN can quite easily be integrated in a more general framework, to serve as a 
powerful model checking engine. vUML and Bandera, which are discussed later in this document, take 
advantage of SPIN in this way. 

The SPIN distribution also contains a graphical user interface programmed with Tcl/Tk, called XSPIN. 
This user interface offers all the functionalities supported by the SPIN command line version within a 
multi-windows application. It also generates graphical Message Sequence Charts from simulation runs 
and counter examples. 

SPIN requires a C compiler and a C preprocessor to run correctly. XSPIN requires Tcl/Tk to be installed 
as well. SPIN is freely available for research and educational use. For commercial use, a small 
administrative fee is requested. 

3.2.8 Conclusion 

In this section we have given a basic introduction to the model checker SPIN and the modeling 
language PROMELA. SPIN models are built around the root concepts of processes and channels. SPIN 
allows the user to simulate models to gain a first understanding of its behavior and already offers 
advanced output formats like graphical message sequence charts. From a given model and any 
requirement expressed in a Linear Temporal Logic Formula, and provided with unlimited memory and 
time, SPIN is always able to check the model against the formula. 

This short presentation could only address the most elementary features of SPIN. In particular partial 
verification techniques have not been exposed. Interested readers are referred to [Holz97] for further 
details. 

3.3 Symbolic Model Verifier (SMV) 

3.3.1 Introduction 

SMV is a model checker first developed by Ken McMillan during his Ph.D. Thesis at the Carnegie 
Mellon University. SMV illustrates the central ideas McMillan investigated in his thesis, which was 
published in 1992. Since then the original SMV system has been split into 2 different versions. 
McMillan further develops the first one after he has moved to the Cadence Berkeley Laboratories in 
California. The results of his research are used by the Cadence Company for its verification product 
line for hardware design. The second version of SMV is maintained by the Model Checking Project 
Group of the Carnegie Mellon University, where McMillan originally implemented the first SMV 
program. 

At Cadence, McMillan has specifically focused the further development of SMV on the verification of 
synchronous integrated circuits. In the meanwhile, at CMU, SMV is used as an experimental 
framework for general model checking. As a consequence, the 2 versions diverge in numerous 
essential points. In particular the language constructs and the logic flavors they use are not the same. 
The Cadence SMV Version has been specialized to use only LTL (Linear Temporal Logic) formulae to 
express properties on execution paths, while the CMU SMV Version uses CTL✱ (Extended 
Computation Tree Logic). In the same manner the process keyword, which permits the asynchronous 
composition of parallel state machines, was suppressed from the Cadence SMV Version. On the other 
hand the Cadence SMV version was extended with central constructs for model refinement (layer 
keyword), and compositional verification. In this report we specifically focus on the Cadence Version of 
SMV, which is the best documented of both. (See [McMill92] and [*McMill99] for a detailed description 
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of both systems.) In the remainder on the text, SMV, when not stated differently, thus exclusively refers 
to the SMV Cadence Distribution in the experimental release 12-09-99. 

3.3.2 Binary Decision Diagrams 

The SMV Cadence distribution is based on the original CMU SMV release, and thus takes over its 
most essential features. One of them and actually the root idea of the original SMV is to use Binary 
Decision Diagrams (BDDs) [Bryant86] to code finite state-transition systems ([BCM92] and [McMill92]). 
BDDs are a compact representation of boolean functions, and as such they can be used to store sets 
of states and transition relationships. A BDD representation is said to be symbolic, because it does not 
extensively list all elements of a set (resp. all pairs of a relationship). This approach has proved to be 
very interesting for integrated circuits, because these circuits show strong structural regularities, which 
can be very efficiently stored by BDDs.  

The use of BDDs in SMV is important to understand the way the system performance depends on the 
chosen model specification. Yet SMV uses BDDs in a totally transparent way from the user point of 
view. 

3.3.3 SMV Basics 

Like SPIN, SMV comes with its own modeling language, the SMV language [*McMill99]. This language 
is a synchronous modeling language built around the signal concept and the next operator. 

 
typedef INTEG 0..255; 
 
module main() { 
  x: INTEG ; 
  init(x) := 0 ; 
  next(x) := x+1 ; 
}  

Figure 14: Basic SMV Model 

For example the SMV Model of Figure 14 defines one signal x of type INTEG. x is initialized with the 
value 0, and evolves according to the equation next(x) := x+1. A simulation of this model with 
SMV delivers the following trace: 

 
x : 0 1 2 3 4 5 6 .. 

Figure 15: Simulation of the Model of Figure 14 

Properties to be verified are stated using the assert keyword. As in SPIN, SMV properties are stated 
using the Linear Temporal Logic (LTL). In SMV the always quantifier is written G for globally and the 
eventually quantifier is written F for finally. For example the property presented in Figure 16 would have 
been written [](<>(x==255)) using the SPIN notation. Figure 17 gives the complete SMV model with 
the property. 

 
propertyToCheck : assert G(F x=255); 

Figure 16: variable x infinitely often reaches the value 255 in the model of Figure 14 

 
typedef INTEG 0..255; 
 
module main() { 
  x: INTEG ; 
  init(x) :=0 ; 
  next(x) := x+1 ; 
  propertyToCheck : assert G(F x=255); 
} 

Figure 17: Complete SMV Model with property 
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3.3.4 Induction 

Besides BDDs, induction techniques are another important contribution of the original SMV that is 
present in the Cadence Version. Induction is particularly used in SMV to check systems with an 
arbitrary number of components. This approach was one of the first steps to combine core Model 
Checking with some Theorem Proving and has been pursued since then as a promising research 
direction [Rush00]. 

In SMV properties are identified by names, so that intermediate lemmas may be used to progressively 
build a proof. 

 
ordset TYPE 0..255; 
module main() { 
  x: INTEG ; 
  init(x) :=0 ; 
  next(x) := x+1 ; 
 
  forall (i in TYPE) 
    p[i]: assert F(x=i); 
 
  forall(i in TYPE) 
    using p[i] prove p[i-1]; 
} 

Figure 18: Simple Proof using induction and lemmas 

Figure 18 is an example taken from [McM99b, p.40], which illustrates the use of lemmas within SMV. 
In this particular case the construct using property1 prove property2 is used to prove a 
property by induction. The property targeted by the model of Figure 18 conjectures that the signal x 
finally reaches the value 255: F(x=255). To come to that result the first forall construct in the 
model potentially defines 255 properties p[0], p[1],...,p[255], which are then recursively 
checked in the second forall construct. 

Things don’t really occur that way in this particular example, because the type TYPE is actually defined 
as an ordered set (ordset keyword). This restricts the legal operations on such a set to 
incrementation, decrementation and comparison to the limits (here 0 and 255) (see [McM99b, p.39] for 
more details). This information on the model allows SMV to reduce the set of properties to be proven to 
p[0], p[1], p[2], and p[255]. (We don’t address here the justification of such a reduction. 
Interested readers are referred to the work of McMillan on that topic in particular to Chapter 5 of 
[McMill92].) 

3.3.5 Layers, Abstractions, and Refinements 

As mentioned above, another core feature of Cadence SMV is to allow several refinement layers of 
description. Higher layers offer an abstracted description of the system. They build its specification, 
and describe what it should do. The lower layers implement the higher layers, and describe how the 
system actually does what it should do. When chosen judiciously, the specification layers can 
drastically reduce the state space of a model by locally simplifying its description. 

The verification of a system against a given property is done is two phases when using refinements: 
first the coherence between specification and refinement is checked. If both are coherent with each 
other the property is checked on the abstracted system. This abstracted system is usually considerably 
smaller than the original one, so that in numerous practical cases this two phase approach proves to 
be globally more efficient than a direct model checking. [McMill97] 

Except for the following discussion in section 3.3.6, we don’t enter in the details of the refinement 
technique in that report for place reasons. A good introduction to it can be found in [*McM99b]. This 
technique is particularly well suited to hardware design, because most low level circuit architecture 
contains intermediary storage units (register, carries, and so on). These elements are essential to the 
work of a circuit, but can be abstracted away when considering the circuits from a sheer functional 
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point of view. Eliminating those auxiliary variables from the model into a specification layer 
considerably reduces the state space. Of course, only properties that don’t directly address the detailed 
implementation of the circuit can then be checked on the resulting model. Besides a state-space 
reduction, another central advantage of this approach is its compositional aspect. Actually, once a 
given specification layer has been proved to fulfill a given requirement, any implementation respecting 
that specification will respect it as well. 

3.3.6 Refinements and Software Verification 

Nevertheless in the case of software verification, it’s not clear in which extend the SVM refinement 
technique as present in the tool can improve program verification. Redundant data storage is not as 
typical in software as in hardware, which notably limits the range of the technique. Additionally, in its 
actual version (12-09-99), SMV requires refinements to map bijectionnally. As a consequence, the 
specification layer can’t describe a broader set of acceptable behaviors than those implied by the 
implementation layer. In particular the specification layer can’t approximate the implementation by 
introducing indeterminism. 

 
typedef SIMPLE_INT 0..7; 
 
module main() { 
  highY, lowY: SIMPLE_INT ; 
  carry: Boolean; 
 
  init(highY):=0; 
  init(lowY) :=0; 
  init(carry):=0; 
 
  if (!carry) { 
    if (lowY<7) { 
      next(lowY):=lowY+1; 
    } 
    else { 
      next(carry):=1; 
    } 
  } /* end if not carry */ 
  else { 
    if (highY<7) { 
      next(lowY) := 0; 
      next(highY):= highY+1; 
      next(carry):= 0; 
    } 
  } /* end if carry */ 
 
} 

Figure 19: A 2-bytes counter  with one carry 

For example let’s consider the model of Figure 19. This example describes a counter stored in two 
3-bit variables (highY and lowY), which is incremented from 0 to 63, and then remains at 63. A 
normal incrementation takes one time unit, except when a carry occurs on the low weight byte lowY, 
when it take 2 time units, because of the carry operation. 

 
lowY :  0 1 2 3 4 5 7 7 0 1 2 3 4 5 6 7 7 0 ...  
carry:  0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 ... 
highY:  0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 ... 

Figure 20: In the model of Figure 19, a carry operation take 2 time units. 

Suppose we want to abstract that model in an 8-bit-counter, one possibility could be to use the 
following model as an abstraction layer: (Note the use of an extra module eightBitCounter for 
modularity.) 
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typedef DOUBLE_INT 0..63; 
 
module eightBitCounter() { 
  y      : DOUBLE_INT ; 
  random : boolean ; 
 
  init(y)     :=0; 
 
  if (y<63) { 
    random := {0,1}; 
    switch(random) { 
      0 : next(y):=y+1; 
      1 : next(y):=y; 
    } /* end switch(random) */ 
  } /* end if (y<63) */ 
} 
 
module main() { 
  counter : eightBitCounter; 
} 

Figure 21: A proposed abstraction for the model of Figure 19 

This model is non-deterministic and accepts any evolution of y in which y steadily grows up to 63. 
Indeterminism is introduced at the line random := {0,1}, where 0 or 1 is randomly allocated to 
signal random. Note that y may in particular stays constant. We want to check if the implementation of 
Figure 20 is actually coherent with this specification. To do so, we simply add the declaration of module 
eightBitCounter to Figure 20, along with the instantiation of a that module in the main module, and 
the following layer declaration1: 

layer specification : { 
  highY := counter.y / 8; 
  lowY  := counter.y mod 8; 
} 
 
prove highY//specification ; 
prove  lowY//specification ; 

Figure 22: layer construct for refinement mapping 

The layer declaration defines the mapping between counter.y and (highY,lowY).Unfortunately, 
SMV will fail to prove the relationships of the layer specification, because the module counter 
allows behaviors for counter.y (like for example staying constant) that are impossible for highY and 
lowY. Stated more generally, SMV does not permit to approximate components away (here the signal 
carry) by introducing indeterminism in a model. In this particular case it is further questionable if the 
proposed refinement would bring any space reduction, since carry is the only signal to be taken out 
through the eightBitCounter description. This is because we have only one carry. If we had lots of 
basic bit-adders with several carry signals to propagate overflows, eliminating the carries through a 
similar abstraction would certainly make more sense. 

3.3.7 Distribution, Reusability 

The Cadence Version of SMV is available on Internet from the personal pages of McMillan at the 
Berkeley University [*McMill00]. The download license grants a free use of Cadence SMV for internal 
research and development activities, but excludes any incorporation of SMV in a commercial product. 
SMV can primarily be used as a command line program but also comes along with a graphical 
interface programmed with Tcl/Tk. As such the integration of SMV in a more general development 

                                                      

1 In SMV, the layer statement is a sort of ’glue’ construct. It connects two levels of abstraction together by 
defining ’bridge’ relationships between the values of each levels. 
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environment can be done quite easily. SMV is available on Windows NT, Windows 95, Sparc/Solaris, 
Sparc/SunOS, HPUX, MIPS/Irix and i386/Linux. 

3.3.8 Conclusion 

Cadence SMV is explicitly dedicated to hardware verification. Though, the ideas developed in the tool 
may be quite interesting for software verification, if not necessarily to the same extend. Actually, 
techniques that were first tested and validated within SMV like BDDs have been incorporated since 
then in other famous Model Checkers like SPIN. The direct support for refinement and abstraction by 
the modeling language and the introduction of some automatic proving techniques like induction are 
further distinctive features of SMV, which make it particularly interesting. 

3.4 KRONOS 

3.4.1 Introduction 

KRONOS is a model checker dedicated to clock automata, i.e. automata with a dense time 
representation. KRONOS has been developed at the Verimag laboratory (Grenoble) around Sergio 
Yovine since the beginning of the 90s. As stated in [Yovine97]: 

KRONOS [9, 10, 8, 11, 26, 20, 6, 5] is a software tool built with the aim of assisting designers of real-time 
systems to verify whether their designs meet the specified  requirements. One major objective of KRONOS is to 
provide a verification engine to be integrated into design environments for real-time systems in a wide  range 
of application areas. Real-time communication protocols [9, 10], timed  asynchronous circuits [20, 6], and 
hybrid systems [23, 10] are some examples of  application domains where KRONOS has already been used.  
KRONOS has been applied to analyze real-time systems modeled in several  process description formalisms 
such as Atp [22], Aorta [7], Et-lotos [9], and  T-argos [19]. Several projects are currently under development 
to connect  KRONOS to specification languages such as Shift [1], Diadem [12], and Tces  (Timed 
Condition/Event Systems) [17]. 

KRONOS stays apart from the two previously presented model checkers SPIN and SMV in that it tackles 
models with dense time representation. Contrarily to SPIN and SMV, KRONOS does not provide any 
modular-structured modeling language, and directly works on an automaton level. KRONOS yet 
provides a certain modularity degree through its ability to compute the product of a timed automaton, 
with synchronization labels. 

3.4.2 Timed Automata 

Timed automata are obtained through the extension of normal state / transition automata with clock 
variables. Clock variables have real values, and all evolve at the same speed as "time passes". Clocks 
may be reset during a run as well, consequently to the firing of a transition. 

The transitions of a timed automaton may be constrained by guard conditions on those clocks2. 
Semantically, such clock guards constrain the time date of the transition firing: Depending on the 
values of the clocks, a given transition may be enabled or not. 

                                                      

2 Only some specific equations are allowed as guard conditions for reasons of computability. More precisely, only 
boolean combination of some specific atomic equations are legal. The comparison between a clock, and a 
rational constant (x <= K), and the comparison between a difference of clocks, and a rational constant (x − y > K) 
are the allowed atomic equations. 
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A
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c
b

a

d
 

Figure 23: A simple normal automaton 

For example the automaton in Figure 23 presents a plain automaton which accepts the following event 
sequences: cdddd.., bacdddd..., babacdddd..., etc.. Those sequences can be summed up 
into the following regular expression :(ba)✱c(d)ω. Figure 24 is a timed version of the automaton of 
Figure 23. The acceptation of an event sequence by this automaton still depends on the events that 
make the sequence up: the sequence acac... for example is neither accepted by the automaton of 
Figure 23 nor by the one of Figure 24. 

A

B
C

c: [x>3 and x<4]
b: [x<1]

a: [x>2] x:=0d

clock: x;

 

Figure 24: Automaton from Figure 23 extended with clocks 

In the automaton of Figure 24, transitions a, b, and c are additionally constrained by conditions on the 
clock x. For example transition b cannot be fired after x has gone beyond 1. Transition a must be fired 
after x has gone beyond 2, and resets the clock x to 0 when it is fired. The automaton itself initially 
starts in state A with clock x set to 0. 

As a consequence a sequence like babacddd.. which is accepted by the Automaton of Figure 23 
may or may not be accepted by the automaton of Figure 24, depending on the dates at which the 
events occur. To account for that extra criterion, events are represented with an extra time stamp 
corresponding to their occurrence date. For example the following timed version of babacddd.. is 
accepted by the automaton of Figure 24: 

(b,0.5)(a,3.2)(b,4.1)(a,14.1)(c,17.5)(d,18)(d,19)(d,20)...(d,n)... 
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The evolution of the clock x for that sequence would be the following: 

States Transitions  Clock      Comment 
 
A->B:  (b,  0.5)    x==  0.5   respects [x<1] 
B->A:  (a,  3.2)    x==  3.2   respects [x>2] 
                    x:=  0     x is reset 
A->B:  (b,  4.1)    x==  0.9   respects [x<1] 
B->A:  (a, 14.1)    x== 10.9   respects [x>2] 
                    x:=  0     x is reset 
A->C:  (c, 17.5)    x==  3.4   respects [x>3 and x<4] 
C->C:  (d, 18.0)    x==  3.9   no constraints 
C->C:  (d, 19.0)    x==  4.9   no constraints 
... 

3.4.3 TCTL Logic 

The theory of timed automata was given a solid theoretical basis by Alur and Dill at the beginning of the 
90’s [Alur+94]. A special flavor of the CTL logic, the Timed Computation Tree Logic (TCTL), was 
developed for these automata [Alur+93]. TCTL allows explicit reference to time and the specification of 
duration between events. The most important result at the origin of that formalism is the following: The 
verification of a TCTL formula on a timed automaton is decidable and can be reduced to the 
verification of a CTL formula on a plain automaton [Alur+93]. 

Like CTL, TCTL is a state logic, contrarily to LTL, which is a path logic. It means that TCTL formulae 
are expressed on the states of a timed automaton. A state of a timed automaton is a pair containing a 
state of the underlying plain automaton (A, B or C in Figure 24), and a value vector for the clocks of the 
automaton. For example (A,x:0.5) and (B,x:3.2) are states of the timed automaton of Figure 24. 

Atomic properties can be expressed on the clock values of a state: For example the property (x<2) is 
verified by the state(A,x:0.5), which is noted (A,x:0.5)|=(x<2), but not by the state(B,x:3.2). 
The future evolution of the automaton from a particular state is expressed by the timed quantifier 
"certainly" ∀<>op.K and the timed quantifier "possibly" ∃<>op.K where op. is some comparison operator 
among <, >, =, <=, >= and K is some rational constant3. With these operators allows representing the 
necessity or the possibility of the occurrence of an event with respect to some time constraint. For 
example the formula on Figure 25 states that, every time the system is in state A, and the clock x 
equals 0, then it’s impossible to reach state C before 2 time units. 

(current_state_is_A and x=0) => not (∃<><2 current_state_is_C) 

Figure 25: A TCTL property that is valid on all states of the automaton of Figure 24 

3.4.4 KRONOS functionalities and techniques 

We don’t address in this report the actual input format of the KRONOS tool, as we have done for SPIN 
and SMV. This format translates the formalism of timed automata we’ve just presented, and the reader 
is referred to [Yovine97] for a complete presentation. 

KRONOS has three main functionalities: computation of the product of several timed automata, 
checking of a TCTL formula on one automaton, and time abstracting reduction of one automaton. 

The time abstracting reduction of a timed automaton takes time out of a time model to obtain a 
behavior-equivalent plain automaton (Time Abstracting Equivalence). Such an equivalence amounts to 
the elimination of explicit time representation in the model, but conserves the causality relationship 
between events. One should note that in most cases the plain automaton underlying a timed 

                                                      

3 We have chosen to present the restricted version of TCTL proposed in [Yovine97]. In fact, as stated in 
[Yovine93, p. 32], this version is less expressive than the complete original TCTL proposed for example in 
[Alur+93]. Interested readers are referred to [Yovine93, pp.25] for more precisions. 
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automaton is not behavior-equivalent to this timed automaton. This is because time constraints induce 
extra interdependences between events that are not present in the original plain automaton. The 
resulting abstracted automaton can then be compared under various equivalences to a specification 
automaton. KRONOS does not check such equivalences itself, but relies instead on the tool Aldebaran 
of the INRIA, which is part on the CADP (Caesar / Aldebaran Development Package) tool set. (See for 
example [Gara+97] for an overview.) 

As presented in [Bozg+98], KRONOS takes advantage of a wide range of technologies. Symbolic state 
representation, on-the-fly traversal, and abstractions are proposed to reduce the state space explosion. 
Here one should note the need to use difference bounds matrices (DBM) conjunctly with binary 
decision diagrams (BDD) for symbolic representation. We can’t enter in the detail of that technique 
here, but the reader is referred to the thesis of S.Yovine [Yovine93] on that subject. 

3.4.5 Distribution, Reusability, Similar Tools 

KRONOS presents itself as a command line program and is available for Sun Solaris 5.7, Linux and   
Windows 98 / NT (State on August 31rst 2000). The tool Aldebaran, which is needed to exploit the time 
abstracting reduction feature is available on SunOS 4.* (Solaris 1.*), SunOS 5.* (Solaris 2.*), and Linux 
2.0. 

KRONOS is freely distributed for academic institutions for non-profit use, and can be downloaded from 
the VERIMAG site [*Kron00].  

Last, but not least, the tool UPPAAL must be mentioned besides KRONOS. UPPAAL offers like KRONOS 
model-checking functionalities on timed automata. UPPAAL is jointly developed and promoted by the 
Design and Analysis of Real-Time Systems group at Uppsala University (Sweden) and by the Basic 
Research in Computer Science group at Aalborg University (Denmark). Like KRONOS, UPPAAL is freely 
available for non-profit research purposes [*Upp00]. In particular neither UPPAAL nor any part of its 
code should be used or modified for any commercial software product. In its present version (3.0.41), 
UPPAAL is available under a fully integrated Java graphical interface, contrarily to KRONOS, which only 
comes as a command line program. 

3.4.6 Conclusion 

The range of models addressed by KRONOS and UPPAAL and hence their expressiveness go far 
beyond those of SPIN and SMV. KRONOS and UPPAAL are specialized on dense time model checking, 
which clearly set them apart from standard model checking tools. Yet one should be conscious that the 
representation of dense time systems and their properties further worsen the state explosion problem. 
As a consequence the systems that KRONOS and UPPAAL can tackle are notably smaller than those 
of SPIN and SMV. Furthermore, the current version of KRONOS and UPPAAL don’t offer any specific 
modeling formalism except timed automata, contrarily to SPIN and SMV. The absence of dedicated 
modeling languages in KRONOS and UPPAAL is certainly to be related with the weak support for explicit 
time representation in most structured programming and modeling languages. 

4 Connecting OO and Model-Checking 

4.1 Introduction 

In the precedent section we have looked at some of the best known model checkers of today’s 
verification field. Though some of them offer dedicated modeling languages (PROMELA in SPIN or the 
SMV language in SMV), those languages clearly remain restricted to some specific aspects of the 
systems they describe. They definitely don't intend to offer the structures and the flexibility of a fully 
enabled programming or modeling notation. This is not their purpose. This would even burden the 
verification task of the corresponding model checkers. Pure model checking tools assume the 
existence of an ad-hoc model of a system. They don't address the actual construction of that model. 

On the other hand, the modeling and structuring of software has always been a critical issue in 
software engineering. In the comparatively long history of what we may call "software notation", Object 
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Orientation is one of the last paradigms to have firmly established itself in the industry. Because of that, 
and for some years now, several research teams have tried to combine Object Orientation with "pure" 
verification tools. In this section, we try to give a brief overview on that topic with three tools that have 
been proposed in that context. The first two tools, vUML and UMLAUT, are focused on the OO 
notation UML (Unified Modeling Language). The third one, Bandera, more specifically addresses the 
verification of Java programs. 

4.2 vUML 

4.2.1 Introduction 

vUML [Lil1+99] is a transformational tool able to convert UML [*UML1.3] models into PROMELA 
descriptions, which can then be processed by SPIN [Holz97]. vUML is being developed at the Åbo 
University (Finland), under the direction of Professor Johan Lilius. The current prototype version (0.21) 
of vUML was implemented by Iván Porres Paltor. Here is how the official web-site of vUML describes 
the tool [*vUML00]: 

vUML is a tool that automatically verifies UML models. [...] vUML verifies models where the behaviour of the 
objects is described using UML Statecharts diagrams. It supports concurrent and distributed models 
containing active objects and synchronous and asynchronous communication between objects. The tool uses 
SPIN model checker to perform the verification, but the user does not have to know how to use SPIN or the 
PROMELA language. If an error is found during the verification, the tool creates a UML sequence diagram 
showing how to reproduce the error in the UML model. 

(source http://www.abo.fi/~iporres/vUML/, state as on 16th August 2000) 

In the remainder of this section we introduce vUML based on the example of the dining philosopher 
problem presented in [Lil1+99]. The code samples are adapted from the corresponding program 
provided with the public distribution of vUML [*vUML00]. 

4.2.2 Representation of UML-Models with vUML 

vUML is programmed in Python [*Pyth00] [AscLu99], an interpreted OO programming language. The 
models to be checked by vUML are described as Python programs as well, using the UML meta-model 
implemented by the tool. For instance Figure 26 presents how the fork object of the dining philosopher 
problem is represented in the sample of the vUML distribution: 

 
eGet     = CallEvent("get") 
eRelease = CallEvent("release") 
 
Fork = UMLClass( 
        name      = "Fork", 
        behaviour = StateMachine( 
                       name        = "ForkBehaviour", 
                       top         = Main, 
                       states      = [Available,Taken], 
                       transitions = [ 
                          Transition( 
                            name    = "tGet"    , source = Available, 
                            trigger = eGet      , target = Taken 
                          ),  
                          Transition( 
                            name    = "tRelease", source = Taken, 
                            trigger = eRelease  , target = Available 
                          )  
                       ] # End transitions 
                     ) # End StateMachine 
    ) # End UMLClass 

Figure 26: Description of a fork class using the UML meta-model of vUML (incomplete) 
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In Figure 26 the elements of the UML Meta-Model are bold typed, whereas their attributes are 
represented in italic. Note the particular Python syntax, which allows the explicit reference to formal 
parameter names. The State Machine coded in Figure 26 is shown in Figure 27 with the usual UML 
graphical notation. 

Available

Taken

eGet eRelease

 

Figure 27: State Chart Diagram of the class Fork presented in Figure 26 
(source [Lil1+99], p.3) 

4.2.3 Semantics of UML State Machines 

Unfortunately, the action semantics of UML is not precise enough to allow an unambiguous translation 
from an UML state machine into a particular formal notation. Because of that, Lilius and Paltor had to 
settle for a given semantics. The semantics they chose is described in [Lil2+99]. The core of that 
semantics consists in the explicit description of the Run To Completion (RTC) step introduced in 
[*UML1.3, pp. 2-149], as well as a precise handling of transition conflicts and deferrable events. 

 
Philosopher =  
   UMLClass("Philosopher", 
      attributes = None, 
      behaviour  = StateMachine( 
                      name       = "philosopherStateMachine", 
                      top        = PhM, 
                      states     = [thinking,eating,wfr,dropl], 
                      transitions= [ 
                          Transition( 
                             name    = "gLeft", 
                             trigger = eAUTO, 
                             source  = thinking, 
                             target  = wfr, 
                             effect  = Action(send=Send(left,eGet)) 
                          ), 
                          Transition( [...] ), 
                          Transition( [...] ) 
                          Transition( [...] ) 
                     ] 
                  ), 
      associations=[left,right] 
   ) 

Figure 28:  An example of object communication with vUML: a Philosopher sends an eGet event 
to its left fork left when processing transition gLeft. 

Lilius and Paltor also chose PROMELA to express the actions and the guards of UML transitions and the 
activities of UML states. In Lilius and Paltor’s semantics, objects communicate along static association 
instances (links), which are considered as delayed reliable channels: events may be arbitrarily delayed, 
but can’t be lost. Figure 28 shows an example of such an object communication taken from the dinning 
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philosopher sample of the vUML distribution: Instances of the UML class Philosopher send 
instances of the event eGet down their left link. This link leads in turn to a fork object. (Figure 26) 

4.2.4 Translation to a PROMELA Program 

In order to be processed by vUML, a model must contain a collaboration diagram. This diagram 
instantiates objects and links based on the UML classes previously described in the model. As such 
the collaboration diagram sets up the runable system that will actually be checked by SPIN. 

 
dinner = CollaborationDiagram( 
            name      ="dinner", 
            instances = [  
              Instance("John" ,Philosopher) , Instance("Fork1",Fork), 
              Instance("Anna" ,Philosopher) , Instance("Fork2",Fork), 
              Instance("Peter",Philosopher) , Instance("Fork3",Fork) 
            ], 
            links = [ 
              Link("John" ,"Fork1", None, left ), 
              Link("John" ,"Fork3", None, right), 
              Link("Anna" ,"Fork2", None, left ), 
              Link("Anna" ,"Fork1", None, right), 
              Link("Peter","Fork3", None, left ), 
              Link("Peter","Fork2", None, right) 
            ] 
         ) 

Figure 29: A collaboration diagram instantiating a Dining Philosopher Problem. 

Figure 29 shows such a collaboration diagram using the Philosopher and Fork classes presented in 
Figure 26 and Figure 28. The corresponding graphical UML representation of that diagram is shown in 
Figure 30. Note that contrarily to usual collaboration diagrams, those used in vUML don’t contain any 
interaction [*UML1.3, Part 2.10 Collaborations, pp. 2-103], i.e. any explicit message exchanges. This is 
because they don’t represent any particular scenario, but instead instantiate a particular context in 
which model checking can take place. 

John : Philosopher

Anna : PhilosopherPeter : Philosopher

Fork1 : Fork

Fork2 : Fork

Fork3 : Fork

leftright

left

right

right

left

 

Figure 30: Graphical representation of the collaboration diagram defined in Figure 29 
 (source [Lil1+99, p.4]) 
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Based on the UML model provided to it, vUML maps each UML class to a PROMELA process type 
(proctype keyword). Those process types are then instantiated in the init process of the PROMELA 
program accordingly to the collaboration diagram of the UML model. Links are implemented using 
PROMELA channels (chan keyword). 

4.2.5 Results returned by vUML 

After the PROMELA program has been generated, vUML launches a deadlock search using SPIN. As 
stated in [Lil1+99], invalid states, live locks, constraint violations and various queue overflows are 
checked as well. Figure 31 shows the sequence diagram returned by vUML for the collaboration 
diagram of Figure 29. Note that the deferring of the deferrable call event eGet is represented with an 
arrow leading to a queue symbol: 

 

In this example, the sequence diagram of Figure 31 ends on a deadlock situation, in which each 
philosopher has taken its left fork and waits for his right neighbor to release its right fork. 

 

Figure 31: Result returned by vUML for the collaboration diagram of Figure 29 
(Head of the sequence diagram is not represented.) 

4.2.6 Conclusion 

Though quite small in size, vUML already offers an impressively powerful bridge from UML models to 
PROMELA programs, and back from SPIN results to UML sequence charts. Unfortunately, because the 
tool is still in a prototype release, hardly any documentation is available on the particular syntax of the 
meta-model and on the source-code. Lilius and Paltor have published a study of a cell production case 
with vUML in [Lil3+99], which gives a good overview of the tool scope and performance, yet vUML 
does not seem to have been used so far in any industrial context. 

A further important restriction of vUML is the impossibility of any dynamic instantiation of either links or 
objects [Lil2+99, p.18]. This means that the context and in particular the instances known to a given 
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object are set in a static way by the collaboration diagram provided to vUML. As such they can’t 
change dynamically during model execution. For example, in the previous dining philosopher example, 
a philosopher instance can’t change the fork instance he is associated with after verification has 
started. As explained in the conclusion of [Lil2+99] they are very good reasons to forbid dynamic 
instantiations, in particular the increased complexity and the potential infiniteness of the resulting 
models. Though, this also considerably constrained the flexibility of Object Orientation, and it is 
certainly worth considering in which extend less restrictive approaches may be proposed. The Bandera 
tool, introduced in the last part of this section, is a representative of such a more adaptable method. 

vUML is freely available on the Internet [*vUML00]. It is distributed under the GNU General Public 
License (GPL), which makes it an open source product. vUML requires a Python interpreter and a 
SPIN installation to work correctly. It can be called from a shell command line. 

4.3 UMLAUT 

4.3.1 Introduction 

UMLAUT (Unified Modeling Language All pUrposes Transformer) is a general transformational 
framework for UML models. It is developed and maintained within the PAMPA project (Modèles et 
Outils pour la Programmation des Architectures Parallèles Réparties) under the direction of Jean-Marc 
Jézéquel at IRISA (Institut de Recherche en Informatique et Systèmes Aléatoires, Rennes, France) 
[HoJé+99]. UMLAUT is not directly dedicated to verification but rather to rewriting of UML models for 
various purposes (among others, the generation of verification models). 

Transformation
Rules

UML Model

UML Meta-Model

Internal
Model

Commercial Tool

Commercial Tool

CDIF / Petal /
XML

Java / Eiffel

GUI (Applet)

Implementation
Framework

Verification
Framework

Validation engines (Open Caesar)
 

Figure 32: UMLAUT Architecture ( partial reproduction from [*Pamp00] ) 

4.3.2 Present and planned functionalities 

UMLAUT is a wide scope project and is still in an early development phase. As a consequence, only 
beta versions of selected executables are publicly available. These releases already give a good idea 
of the envisioned final tool, but don’t offer the full functionalities targeted by the project.  
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Figure 33: Model Browser and Class Diagram windows of UMLAUT 

The versions available by the time of this study (Release Gauvain 1.5 and Release ASL 1.1) contains a 
clean implementation of the 1.1 metamodel along with some of the UML 1.3 extensions. It allows the 
graphic edition of UML models. Most diagrams are available, including State Charts diagrams. The 
Java Graphical User Interface suffers from some bugs, but that’s quite understandable, considering 
the complexity of the tool. Code generation in Eiffel is available as well, along with OCL (Object 
Constraint Language) support for the specification of pre- and postconditions. Figure 33 shows two 
typical windows of UMLAUT displaying a sample model. 

We could only test UMLAUT on NT. We had unfortunately some troubles with the Eiffel Code 
generation on that platform and could not test that feature. 

In the meanwhile a new UMLAUT module for verification and simulation purposes has been released 
(UMLAUT/Simulator, Release Simulator 1.1), which offers a bridge to the CADP toolbox developed at 
INRIA [Gara+97] [*CADP00]. Unfortunately, we could not more precisely look at it because the tool 
was not yet available by the end of our study. 

Though, an interesting question about that new module is the way a UML specification is converted to 
a finite state transition system. Actually, as discussed earlier about vUML, some essential features of 
most programming paradigms — like infinite recursion, or dynamic memory allocation —, and more 
specifically of object oriented notation — like dynamic class instantiation — introduce potentially 
unbounded behaviors, and thus ban any direct model checking. The question is which constrains, 
if any, UMLAUT sets on UML models to be able to convert them in finite discrete systems. 

4.3.3 Availability and Conclusion 

UMLAUT is planned to be distributed as freeware, once completed. At the time being only compiled 
executables may be downloaded from the IRISA web site [*Pamp00]. Those executables run with a 
java graphical environment and use a native shared library for core functionalities. Files may be read 
from either a native format, the CDIF format, or directly from Eiffel. Format conversion the other way 
round is also available, though this seems not to work very well under NT for the time being. 

The UMLAUT system is available in three different versions: standard (Release Gauvain 1.5), with 
support for the Action Semantics Language [*OMG00] currently being defined at the Object 
Management Group (Release ASL 1.1), and as a simulator / translator to CADP (UMLAUT/Simulator, 
Release Simulator 1.1). Each version is available under Linux, Solaris and NT. 
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It is difficult to precisely evaluate the potentialities of UMLAUT at the present time, since most versions 
are still incomplete and are not completely stable. The root ideas behind the tool are very promising, 
and the generic approach that was chosen allows a great flexibility for a broad range of applications. 

4.4 Bandera 

4.4.1 Introduction 

The last tool we look at within this overview is also the one we could the least experiment with. 
Bandera [Corb+00] [*Band00] is developed at the Laboratory for Specification, Analysis, and 
Transformation of Software at Kansas State University around Matt Dwyer, in collaboration with James 
Corbett of the University of Hawaii. Several publications related to Bandera have already been 
published, though the first public release under the GNU GPL license is not planned before September 
2000. 

The official web-site of the Bandera project presents the Bandera framework in the following way 
[*Band00]: 

The Bandera* project addresses one of the major obstacles in the path of practical finite-state of verification 
of software. Tools like, SMV and SPIN, accept as input a description of a finite-state transition system. 
Bridging the semantic gap between a non-finite-state software system expressed as source code and those 
tool input languages requires the application of sophisticated program analysis, abstraction and 
transformation techniques.  

The goal of the Bandera project is to integrate existing programming language processing techniques with 
newly developed techniques to provide automated support for the extraction of safe, compact, finite-state 
models that are suitable for verification from Java source code. While our ultimate goal is fully-automated 
model extraction for a broad class of software systems, our approach takes as a given that guidance from a 
software analyst may be required. 

 (source http://www.cis.ksu.edu/santos/bandera/ as on 23 August 2000) 

4.4.2 Need for Reduction 

The vUML tool presented before in this document introduces a totally defined mapping from OO 
models (expressed with UML) into the specific PROMELA language of the SPIN model checker. As 
mentioned before, this was only possible after Lilius and Paltor defined a clear formal semantics for 
UML, which was restricted enough to be expressed in the targeted PROMELA language. In the case of 
vUML, the source formalism (OO, and more precisely UML) itself was adapted to the target formalism 
(finite state transition models). As a consequence any model expressed with vUML is assured to be 
one-to-one convertible to a PROMELA program. 

In the case of Bandera, the same approach can’t be used, since the Java programming language can’t 
be customized — and thus restricted when necessary — in the same way UML can. Because the 
expressiveness of Java is too powerful for direct model checking, each Java program that is to be 
verified by that mean must be boiled down to a finite state transition system in a first time. This is 
exactly the mission the Bandera Project set itself. Bandera provides a chain of more or less automated 
reduction mechanisms, which permit the conversion of a Java Source Code into the input languages of 
common model checkers. Figure 34 shows the architecture of the Bandera tool to reach that goal. 
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Figure 34: Architecture of the Bandera Framework (reproduced from [*Band00]) 

4.4.3 Slicing and Variable Abstraction Binding 

The reductions provided by Bandera aim at producing an optimized abstracted model with respect to 
the property being checked. This goal is closely related to those of compilers and object code 
optimization, and because of that, the techniques proposed in Bandera are often inspired or related to 
those of compiler engineering. 

The main idea is to get rid in a first time of any element (variables, threads) present in the source code 
that has no relevance to the property being checked. This first step is referred to as slicing. The result 
of slicing is then further reduced by applying data abstraction. The Bandera Data abstraction is similar 
to the SMV Data Abstraction mechanism. The ranges of values of some variables are interactively 
restricted to a smaller set of abstracted values. This process is referred to as abstraction binding, since 
each individual variable may be bound to a specific abstraction (provided abstraction compatibilities 
are respected). In order to allow abstraction reuse, Bandera provides a library of abstractions, which 
can be extended by the user. The undefined values and the indeterminism introduced by the data 
abstraction are automatically handled by Bandera. 

Slicing and data abstraction may be sufficient in some case to get a finite tractable model. If this is not 
the case, model bounding is applied to limit the dynamic and potentially unbounded behavior of the 
model. (For instance by limiting the number of instances of a class.) 

4.4.4 Conclusion 

Similarly to UMLAUT, it’s difficult to precisely evaluate Bandera, since no executable was released so 
far. Compared to vUML and UMLAUT, Bandera certainly goes a step further by trying to bridge the 
“semantic gap”, as its authors call it, between programming languages and model checkers. We could 
also find another project focused on the verification of java program: JCAT (Java(TM) Concurrency 
Analysis Tool) is developed at the Computer Networks and Architectures Group at the Polytechnic of 
Turin [*JCAT00]. On a similar level the Bell Laboratories offer a tool called VERISOFT for systematic 
software testing using Model Checking [*Veri00]. We have not evaluated those tools, but they shows if 
needed that the direct connection between programming languages and verification tools has become 
an important research issue. 
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5 Conclusions 

In this report, we have tried to give a broad overview of the model checking field, more particularly in 
connection with Object Oriented languages and notations. The main difficulty while trying to combine 
the better of the two worlds mainly arises from the irreducibility of Object Oriented Languages to any 
finite state transition structure. This semantic gap is actually not specific to Object Orientation in itself, 
and is typical of most programming languages. Object Orientation further complicates the matter by 
inherently allowing the dynamic instantiation of classes, and dynamic type substitution (polymorphism). 

To work around that stumble stone, at least two ways have been investigated so far. The first one, 
represented by vUML and most probably by UMLAUT, consists in restricting the object oriented 
formalism up front. In particular vUML does not allow any run time instantiation. The second way, 
represented by Bandera, builds on compiler techniques to reduce an OO program into some finite 
discrete state transition system. This reduction may unavoidably result in some information loss, which 
must be controlled by the tool. In particular, results on the reduced system may not make any sense for 
the original java program because the reduction was too aggressive. This second approach is also 
naturally connected to Theorem Proving because of the inherent potential infiniteness of programs. 

Both ways actually make sense in our opinion. The up-front restriction of formalisms implicitly 
introduces a process development philosophy in which certain design decisions are considered taboo 
a priori. It associates Model-Checking with a preventive approach to software development. One could 
argue on the benefit of Object Orientation if its most distinctive features must be disabled. This is 
definitely an issue deserving thorough discussion, which has more generally been at the core of most 
software engineering considerations. The second line of attack adopts a pragmatic philosophy. It tries 
to prove what can be, and accepts in advance the possible undecidability of the verification. This 
second approach allows more freedom in the design of software, and promises more gain in case of 
success. But success is not guarantied. 

It is probable that any practical development process would make the best choice out of a combination 
of both approaches. We further see a great opportunity in the efforts to adapt formal model-checkers 
to popular OO Notations for the further democratizing of those techniques. With more practitioners 
given access to verification means, we can hope for a stronger industrial feedback on model-checking, 
and its benefits, as well as the ways it can best be applied in practice. 
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