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Abstract

The use of formal verification methods has been studied for several decades
now as a promising mean to improve software quality, particularly in the
context of concurrent systems. Among them, approaches based on finite state-
machine representations certainly belong to the most popular. Unfortunately,
the state machine representation of a concurrent system grows exponentially in
size with the number of its concurrent components. In this technical report we
give an overview of two of the most important techniques proposed to fight
against this combinatorial state proliferation, commonly known as the state
space explosion.

The first one, based on Binary Decision Diagrams [BCM90], is a representative
of symbolic approaches. These techniques use compact representations of state
regions and transition relationships to reduce the memory requirement of
verification algorithms. We first introduce general BDDs in an informal way
using a small example. Then we show how those BDDs can be used to code a
small state transition system.

The second state reduction technique we present is based on partial unfolding
of Petri Nets [McMill95]. It belongs to the partial order reduction methods.
Such approaches are based on the idea that in most cases the total interleaving
of concurrent actions is not needed to check a given property on a system. In
such cases, a total interleaving distinguishes between action sequences and their
intermediary state counterparts that are equivalent from the point of view of the
checked property. In this report we use a small concurrent system expressed
with two state machines to show how the partial unfolding technique can be
applied to it. We also introduce the informal concept of "unambiguous past /
divergent future" to sum up the "self conflict freedom" and "forward conflict
freedom" rules introduced in [McMill95].
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2

Introduction

Formal Verification techniques like model-checking are quite popular in concurrent environments
(communication protocols, embedded software, distributed networks). As a matter of fact the quality
requirements and the high complexity of these systems makes formal verification particularly
interesting in spite of its inherent cost.

Such verification techniques are usually based on a finite state-machine representation of the system
they are applied to. Unfortunately, the state machine representation of a concurrent system grows
exponentially in size with the number of its concurrent components. This is the well known explosion
problem. Because of that, techniques with extensive state spaces representations very rapidly run out
of memory when confronted with industrial cases.

Since the beginning of the 90’s numerous approaches have be proposed to alleviate this limitation, and
allow the verification of larger systems. This technical report gives an introduction to two of those
approaches: Binary Branching Diagrams (BDDs) and Partial Unfolding of Petri Nets. Both have been
studied in a verification context by McMillan in its thesis [McMill92], and have enjoyed a constant
attention by the research community since then.

We first look at BBDs in the next section. Using an example we give an informal description of what
BDDs are, and try to point out the motivations underlying their introduction in [Bryant86]. In a second
step based on the synthetic paper [BCM90], we explain with another example how BBDs can be used
in a verification context to symbolically represent state sets and relationships.

In a second section we address the partial unfolding of Petri Nets, as it was presented in [McMill92]
and [McMill95]. Here again we've favored an intuitive presentation of the method over a formal
description of its details.

3 Compact Set Representation with Binary Branching Diagrams

3.1 Introduction

A synthetic presentation of the use of BDDs (Binary Decision Diagrams) in Model Checking can be
found in [BCM90]: “Symbolic Model Checking: 10720 states and beyond". This article unifies several
former techniques using BDDs in a synthetic method base on the p-caculus. BDDs themselves were
introduced in [Bryant86] to represent boolean functions and check integrated circuit components.

3.2 Principle of BDDs

Primarily, a BDD is a compact and canonical representation of a boolean function based on a decision
graph. Canonical means any boolean function has a unique BDD representation. This characteristic is
essential for verification, since it provides a direct way to compare two functions with respect to
relationships such as equality, implication, or complementarity. Let’s note in particular that the usual
definition of a boolean function as a composition of boolean operators is not canonical.

For example let's consider the function f (x;, x», x3) = x| A (X2 v x3), where x|, x,, and x5 are boolean
variables, with value range {0; 1}. A first naive canonical representation of f could consist in a three

level binary tree, each level corresponding to a variable, and each of the 2°=8leavesto a possible
variable combination. (Figure 1)

Avoiding State Explosion : A Brief Introduction To Binary Branching Diagrams And Petri Net Unfoldings
Convention CIFRE 413/ 99 — LAAS-CNRS / Twam Informatique Monday, October 09, 2000 09:10
F.Taiani, M. Paludetto, T. Cros Page4/14



XA

b 1
0 c
X2 X2
1 0 1
d 0 e f / g
X3 X3 X3 X3

0 ) 0 1 0 1 0 1
ORRONCERG joROERG
Figure 1: Expanded Tree Representation of f (X;, X5, X3) =X; A (X3 VX3)

In this representation each "upper" node (i.e. nodes which are not leaves) forms a decision point at
which the corresponding variable is tested to decide of the further course of the evaluation. The two
alternatives correspond to the subtrees of the node. The computation of f for a given valuation of the
variables amounts to a traversal from the root node (a) to one of the leaf. Figure 1 illustrates such a
computation for the valuation (x;= 0, x,= 0, x;= 1), which yields the value 0. Note that a computation in
Figure 1 always goes through the variables x;, x,, x5 in this order.

The BDD representation of f amounts to the elimination of the redundant and irrelevant parts of the
"naive" computation tree of Figure 1. Nodes that have no influence on the further progress of the
computation (for example nodes d, f, and g) are taken away. Identical subtrees are folded up together.
The resulting graph (Figure 2) is far more compact. The computation path of the same valuation
(x1=0, x,=0, x;= 1) as in Figure 1 has been represented. One sees that that path and hence the
computation is shorter on the BDD because the variable x; is not taken into account any more. The
order of the remaining variables along that path (x;, and x,) stays the same as in the computation tree.

This is generally true of all the computation paths of the BDD: some variables may be absent, but the
remaining ones keep the same ordering.

X1

4

X2

Figure 2: BDD Representation of f (x, X, ,x3) =xV ()c2 A x3)

On this short example, we see how efficient BDD storage can be compared to an extensive
computation tree. Unfortunately the size of a BDD for a given function strongly depends on the ordering

of the input variables. In the example of Figure 2 an ordering (x,, x3, x|) would have yield a bigger
BDD. We come back on that issue in more details in the next section.
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3.3 Semi-formal Definition BDDs

3.3.1 Basic Structure

For a given ordered set of boolean variables (x,x3...,X,), a BDD can be defined as a finite acyclic
oriented binary graph with labeled nodes and edges (also called a binary decision graph). This graph
can be seen as the representation of a partial order on its nodes (because of the acyclicity and the
oriented edges). A node a is said to be smaller than a node b (or b bigger than a) if there is a path
going from a to b (ordering condition on nodes). A BDD should have a unique minimal element (the
graph has a unique “root”).

3.3.2 Labeling of the nodes

The leaves of the graph (i.e. its maximal elements) are labeled with the boolean values 0 and 1 (or
true and false). The other nodes are labeled with one of the boolean variable (x{,x;...,x;). The labeling
with the boolean variables is such that if a node a is smaller than a node b, then the label x; of a should
be smaller than the label x; of b: i <.

3.3.3 Labeling of the edges

The edges of the graph are labeled with 0 and 1 (or true and false). This labeling corresponds to the
resolution to a particular value of the variable that labels the node.

3.3.4 Unicity of BDDs

To insure the canonical form of a BDD (i.e.: for a given ordering of boolean variables and a given
boolean function there exists a unique BDD representing that function), a further condition is added: No
node should have its 2 edges going to the same node, or its 2 edges going to two "identical" subtrees
(i.e. the resolution of the variable to either true or false has no influence or the further computation of
the function). This constraint is a sort of “singularity” condition and aims at avoiding redundancy in the
BDD. It can be shown that as defined above and with that condition the BDD representation of boolean
function is unique [Bryant86].

As mentioned above the fact that BDDs yield a canonical representation of a function is of critical
importance for verification purposes since it allows efficient function comparison.

3.3.5 Computation of a function represented by a BDD

The computation of a boolean function with a BDD amounts to a traversal of the BDD from the root to
one of the leaves, by choosing on each node the edge corresponding to the value of the variable
labeling the node. Because of the ordering condition on nodes, variables are only evaluated once.
Because of the singularity condition on BDDs only variables that influence the current computation are
evaluated.

3.3.6 Size of aBDD

As mentioned previously, the size of BDDs strongly depends on the ordering of the variables. Finding
an optimal ordering is an NP complete problem (i.e. today we need an exponential time in the
problem's size to solve it). Even with an optimal ordering, some BDD representations may be
exponentially large with respect to the number of variables (no silver bullet here) [Bryant86]. But in
many practical and useful cases a good ordering (not necessarily the best one!) of the variables yields
a BDD small enough for practical use.
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3.3.7 Operations on BDDs

[Bryant86] present algorithms to calculate the BDD of “f; operator f,”, from the BDDs of the functions
/i and f,, for any binary boolean operator such as and, or, or xor. The BDD of a quantified boolean

formula, such as 3v: f (v,x4,...,X,), can be computed with the same algorithm using the following
transformation [BCM9Q]:

A f (VX1 Xo) =f(0,X1..., Xp) or f (1,X4..., Xn)

3.4 Example of the use of BDDs for model checking

As shown in the precedent part BDDs are a compact representation of boolean functions. If we
consider a finite state transition system (States, Transitions), we may code each state s as a boolean
string:

States - {0,1}"
S 4 (-le xzv"'v xn)

With this coding a set of states can be coded as a boolean function over the boolean encoding of the
states: the boolean function should return 1 whenever the state is in the set and 0 otherwise.

@/V
(@)

Figure 3: A simple State Transition System

For example, let's consider the set of states {b, c, d} in the State Transition System of Figure 3. If we
choose the following boolean encoding of the states:

(X1 =0, X2 =0)
(X1=0, X2 =1)
(X1=1, X2=0)
(X1 =1, X2 =1)

o0 oo
VLl

The set {b, c, d} will be coded with the following BDD:

X1

Figure 4: BDD Representation of the set {b, c, d} of the system of Figure 3.

In this particular case the BDD representation is about the same size as the extensive enumeration of
the states of the set. In larger examples the BDD of a set may be tremendously smaller than extensive
enumeration.
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BDDs can be used to store relationships as well. If we consider the state machine of Figure 3, the
transition relationship between the states can be expressed as an enumeration of state couples:

{(a, b), (b, ¢), (c, b), (c, d) }. Using the previous state coding this enumeration can be coded in turn
with a set of 4-bit boolean strings: { 0001, 0110, 1001, 1011 }. This set can be expressed with a BDD
as done before.

Using such representations fix point algorithms can be used to compute the set of states of a state
transition system that verifies a given LTL or CTL logic formula. (See [BCM90] for more details.)

4 Partial Unfolding of Safe Petri-Nets

4.1 The interleaving problem

The BDDs presented in the previous section permit avoiding redundancy in systems showing strong
structural regularity and low data flows [BCM90]. In concurrent systems, another way to achieve
compact representation consists in avoiding explicit interleaving of concurrent actions. Figure 5 shows
2 concurrent state machines that run independently. (l.e. there is no synchronization between them.)
They are combined together to form a state machine of the complete system. In the resulting
automata, the sequences of actions “ab” and “ba” are distinguished, as well as the corresponding
intermediary states "1a,2b" and "1b,2a". For most properties (for example deadlock freedom), this
distinction is useless since the elementary state machines don't interact with each other. Though it
contributes heavily to the state space explosion. More generally this situation occurs when many
concurrent problems are loosely synchronized.

A natural way to avoid that interleaving problem consists in using Petri Nets instead of the direct state
machines product to represent concurrent processes. Figure 6 shows such a representation. The
question is now: how can such a representation be used to check the validity of a logic formula on the
system. A naive and brute force answer would consist in constructing the reachability graph of the net,
and check the formula on the graph. In the case of Figure 6 this is equivalent with constructing the

product machine.
\aI \bI

Figure 5: Total interleaving of actions (Here simultaneous actions have been discarded)

[McMill95] proposed an answer to that problem consisting in building a partial unfolding of a safe Petri
Net. This partial unfolding is finite, and is particularly compact when many processes run concurrently
with a weak synchronization.
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Figure 6: Synchronization product of 2 machines represented as a Petri Nets.

4.2 Unfolding of a Petri Net:

4.2.1 Occurrence Nets:

The unfolding of a Petri Net with respect to an initial marking is a special kind of a Petri Net called
Occurrence Net. This Occurrence Net corresponds to a sort of “extensive” representation of all
possible runs of the first Petri Net. Figure 7 shows the beginning of the occurrence net of Figure 6. In
an Occurrence Net each place (resp. transition) is labeled with the name of a place (resp. transition) of
the original PN. Note: In the occurrence net of the Figure 7, the labels are shown with running numbers
to distinguish the individual places and transitions.

Intuitively two transitions of an occurrence net with the same label correspond to different
“occurrences” (different “firings”) of the same transition in the original Petri Net. For example the
transitions tau(A).1 and tau(A).2 in the occurrence net of Figure 7 correspond to different firings of the
same transition tau(A) in the Petri Net of Figure 6. To clearly distinguish the transitions of an
occurrence net from those of a normal Petri Net, the transitions of an occurrence net are usually call
‘events’.
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Figure 7: Infinite Unfolding of the Petri net of Figure 6

There exists a kind of "instantiation” relationship between an Occurrence Net and the represented Petri
Net. Consequently the input places (resp. output places) of an event of an Occurrence Net should be
labeled with the input (resp. output) places of the transitions of the original net represented by this
event. For example in Figure 7 the event a?a!.1 instantiates the transition a?a! in Figure 6. Because
a?a! has 2 input places A2 and B2, and 2 output places A1 and B1, a?al.1 has 2 input places A2.1
and B2.1, which are instances of the places A2 and B2, and 2 output places A1.2 and B1.2, which are
instances of A1 and B1.

An Occurrence Net must further have the following properties:
1) Acyclicity:

In a Petri Net each place induces a relationship between its output transitions and its input transitions.
In an occurrence net the transitive closure of that relationship should be a partial order (i.e. no cycles
should exist in the occurrence net considered as a bipartite oriented graph).

This partial order on events (i.e. transitions) of an occurrence net corresponds to a causality order
between the firings of transitions in a run of the original PN. In an occurrence net, when you can travel
from one event to another by a sequence of oriented arcs the second event is said to be posterior to
the first one. For example in Figure 7 a?a!.1 is posterior to tau(A).1 and to tau(B).1, and tau(A).3 is
posterior to tau(B).3.

2) Existence of an initial marking:
The occurrence net should have a set of minimal events. (The causality order discussed above is said

to be well-founded.) Thus it’s not possible to infinitely step back on the time line. Starting from any
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event (i.e. any transition) in the occurrence net, it should always be possible to trace back to a (partial)
initial marking.

The input places of the minimal events of an occurrence net correspond to the initial marking of the
original PN. For example in Figure 7, the minimal events are tau(A).1 and tau(B).1. Their input places
are A1.1 and B1.1, which correspond to the initial marking of the Petri Net of Figure 6.

3) Unambiguous Past:

Considering an event in an occurrence net, there should be a unique unambiguous ‘sequence’ of
partially ordered events (firings) leading to that event from the initial marking. (Sequence is actually not
the right word, since a sequence is usually supposed to be totally ordered. The word ‘Configuratior? is
usually preferred [McMill95].) This requirement is achieved by the forward conflict freedom property
[McMill95]: Two different events of an occurrence net should not produce their token in the same
place. (Note: in this discussion we’re only considering safe PNs.)

4) Divergent Future:

Indeterminism in an occurrence net should lead to disjoint evolutions of the occurrence net. Stated
more formally: if 2 events a and b are in structural conflict (i.e. they have at least one common input
place like for example a?a!.1 and tau(B).1 in Figure 7), the events and places posterior to a should not
be comparable with the events and places posterior to b. (The “evolution” of the net after a — the
future of a — should not mix with the “evolution” of the net after b — the future of b —.)

Note that such interferences between conflicting futures may be of two kinds. In the first case, two
conflicting futures mix for the first time on a common place. In this situation the past of the common
place is not unique and this also breaks property 3 about "Unambiguous Past". In the second case the
two conflicting futures mix for the first time through a common event. Property 3 does not cover this
case: the past of the common event is actually unique. The problem is that that past is not realizable:
the common event requires that two evolutions of the system that mutually exclude each other take
place. This particular situation is called "a self conflicting event' in [McMill95].

The four properties presented here are rather informal. Interested readers are referred to [McMill95] for
a more detailed and formal definition of occurrence nets for safe Petri Nets.

4.2.2 Reachability result for Occurrence Nets

An occurrence net is built in such a way, that a place of the original net is reachable from the initial
marking if and only if it is instantiated at least once in the occurrence net. Thus partial reachability of a
group of places {p1, p2..-, Pn } can be tested by adding a transition t and a place p, with t taking {p+, p2,
..., Pn } @s input places and p as output places. Testing the reachability of {p4, p2, ..., Pn } amounts to
testing the reachability of p.

Most of the time occurrence nets are infinite and can’t be directly checked for verification. Fortunately a
finite prefix of an occurrence can be founded, which has exactly the same property with respect to
reachability as the entire occurrence net. The definition of that finite prefix relies on the notion of cut-off
point.

4.2.3 Cut-Off Points

Informally a cut off point is an event in an occurrence net which “locally” produces a marking that has
“already” been produced by the occurrence net. Before defining more precisely a cut-off point the
definition of the backward closure of an event must be defined, as well as the finite marking of a
backward closure.

Given an event a, its backward closure is the “piece” of occurrence net which contains all the events
prior to a, as well as the places linking those events (See [McMill95] for a formal definition). For
example the backward closure of the event tau(B).2 in Figure 7 is the subnet consisting of the
transitions tau(A).1, tau(B).1, and a?al.1, and of the places A1.1, B1.1, A2.1, B2.1, and B1.2.
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The final marking of a backward closure is the set of places:

e ejther in which token are produced by one of the event of the backward closure, but are not
consumed by any event of that closure

¢ or which are part of the initial marking, without being consumed by any event of the backward
closure.

(Note: because we only consider safe PN, we may identify markings with set of places.)

For example the final marking of the backward closure of the event tau(B).2 in Figure 7 is
{A1.2,B2.2}.

A cut-off point of an occurrence net is an event a that fulfills one of the following conditions:

e There exists another event b, such that the backward closure of b is smaller than the one of a
(with respect to cardinality), and the final marking of the backward closure of b is the same as
the final marking of the backward closure of a.

o The final marking of the backward closure of a is the initial marking of the original net.

(Note: these 2 cases could be unified by adding a start transition to the original safe PN, which would
produce one token in each place of the initial marking from one unique extra place.)

For example in Figure 7, a?a!.1 is a cut-off point because its final marking is the initial marking.

4.2.4 Partial Unfolding of a Petri Net

A partial unfolding of a safe Petri-Net is the biggest subnet of the corresponding occurrence net with no
cut-off points. Figure 8 shows an example of partial unfolding for the PN of Figure 6. [McMill95] shows
that that partial unfolding contains all reachable places, and that all reachable places are in that partial
unfolding.

Al B1.1

tau(A).1 tau(B).1

A2.1 B2.1

Figure 8: Partial Unfolding of the Petri Net of Figure 6.

4.2.5 Practical Results

The size of the partial Unfolding of a Safe Petri Net may grow exponentially with the number of
concurrent processes. Nevertheless in cases with lots of concurrent processes that are only loosely
synchronized, far better results can be reached. For example, the dining philosopher problem is treated
in [McMill95] as an example, and proves to be very well adapted to this unfolding technique. Though
the total size of the product state machine grows exponentially with respect to the number of
philosophers, the size of the partial unfolding only grows linearly.

McMillan also gives interesting results for the checking of a Distributed Mutual Exclusion Protocol.

4.2.6 Extensions

Improvements to this technique have been proposed in the meanwhile, for example in [Kondra+96].
Some other approaches have extended the unfolding technique with time and clocks [Bieb+99].

Avoiding State Explosion : A Brief Introduction To Binary Branching Diagrams And Petri Net Unfoldings
Convention CIFRE 413/ 99 — LAAS-CNRS / Twam Informatique Monday, October 09, 2000 09:10
F.Taiani, M. Paludetto, T. Cros Page12/14



5 Conclusion

In this report we have given a first introduction to Binary Branching Diagrams and Partial Petri Net
Unfolding, two important approaches to avoid the state space explosion problem encountered in the
formal verification of concurrent systems. In order to keep our presentation as understandable as
possible, we have used small examples all along of the report, and we have avoided deep theoretical
considerations whenever possible. Readers who would like to learn more on these topics are strongly
encouraged to have a look at the references at the end of this article.

BDDs and similar techniques consisting in a compact representation of state space regions and
relationships are sometimes referred to as "symbolic" methods. This is because they manipulate
intensive representations ("symbols") of large structures, rather than extensive ones.

Partial Petri Net Unfolding on the other hand belongs to partial order techniques such as those
presented in [Gode90] or [ProLi91]. Those methods have in common to avoid the total ordering of
transitions in a concurrent system, which is usually induced by traditional tree search approaches, but
don't reflect properly the nature of concurrency.

Besides symbolic and partial order reductions, other methods have been proposed to fight against the
state space explosion problem. Among them on-the-fly model checking is certainly one of the most
important. Instead of visiting the entire state space with compact representations like BDDs, or taking
advantage of weak synchronization like Partial Order approaches, on-the-fly model checking focuses
the search on the state region and the state information relevant to a property. The on-the-fly approach
strongly relies on the connections between automata theory and logics. A synthetic approach to it can
be found in [BMVW94].

Finally, some approaches have been proposed to combine the best of both worlds (space-efficiency
and on-the-fly), for example as in [Henz"96].
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