SR (Systèmes Répartis)

Unit 2: Basic mechanisms and properties: Synchrony, Asynchrony, Reliable Channels

François Taïani

Distributed Algorithms

- Distributed Algorithms look at
 - fundamental problems of distributed coordination
 - → for instance: agreement, mutual exclusion, leader election...
 - in an abstract way (abstract model of reality)
- Sometimes assuming some adverse conditions
 - participants may behave somewhat erratically
 - messages may get lost
- Goal of the study of distributed algorithms
 - find out whether something is possible under which conditions
 - for solvable problems, prove that a particular solution works
 - compare correct solutions to the same problems

Goal of this session

- A first contact with **Distributed Algorithms**
- Explore some fundamental aspects of distributed systems
 - distinguish between different kind of distributed systems
 - an example of what can and cannot be done
- 3 problems presented as metaphors
 - The cursed monastery
 - The royal wedding
 - → The 2 generals
- We will discuss each of them, try to find solutions and see what this teaches us on distributed systems

Group Solving Session

The Cursed Monastery

- A visitor comes to a remote monastery and announces:
 - " Some of the monks have been cursed by the local wizard and marked by a point on their forehead. They must all leave the monastery, or the whole community will perish."
- This monastery obeys a very strict rule
 - → There are not mirrors in the monastery
 - Monks do not communicate in any ways
 - → They only meet once a day for dinner
- The visitor makes his announcement at diner
- How many days does it take for all the cursed monks to leave the monastery and why?
 - → Hint: the monks have studied distributed algorithms

The Royal Wedding

 A king would like to marry his son to the princess of a neighbouring kingdom

- By tradition, if the alliance is agreed, the wedding will take place in a remote monastery, on the border between the two kingdoms
- It is all right if the parties do not arrive at the same time at the monastery
- Messengers travel by horses, and may get lost to thugs
 - however they have a non-zero chance of getting through
- Design an algorithm that allows the wedding to take place if both parties agree (if not, nothing should happen)

The 2 Generals

- 2 allied generals have surrounded their common enemy
- Their camps are 1 day apart by horse from each other
- They want to agree on when to attack
- Each can send the other one only one message per day
- Messengers might get attacked by thugs and get lost
- Design an algorithm for the 2 generals to reach an agreement and attack simultaneously

What have we learnt?

- Whether you know or not how long your messages will take makes a huge difference
 - → No bound on communication delays: asynchronous systems
 - → Bounded communication delays: synchronous systems
- With bounded delays + global clock (monastery)
 - Not doing something can mean a lot
- Some problems have no solution
 - timely coordination with lossy channels impossible (the generals)
- If communication channels are faulty
 - possible to make them perfect (the royal wedding)
 - but a price to pay: communication delays can get arbitrary long
 - → this is how **Ethernet** & **TCP/IP** work
 - does not work for real time systems

F. Taiani

8