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Motivation 
  We have use the word “atomic” quite a few times 

 “this operation is (is not) atomic” 
 “this sequence of operation needs to be atomic” 

  What does this mean exactly? 
 Etymology: Ancient Greek ἄ - τοµος (cannot be cut) 
 Can this be captured formally? 

F. Taiani 2 



Case 1: Read / Write Objects 
  System model 

 read / write objects: 2 operations read() and write(..) 
 operations invoked by processes, run concurrently 
 an execution captured by an history 

  History 
 a sequence of events 
 two types of events: invocations, and return events 

  invocations labelled with 
 invoker, invoked object, parameter passed 

  return events pair-wise associated with an invocation 
 at most one return event per invocation 
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Example 
  One shared object, two processes 

 history made of 8 events, 4 operation executions 
 History: P1

start, Q1
start, P1

end, P2
start,Q1

end,P2
end,Q2

start,Q2
end 

  Order exists between operations 
 P2 happens after P1. Q2 happens after P1, P2, Q1. 

 what about Q1? 
 How would you formally define this order? 
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P1: a.read() 0 P2: a.write(1) 

Q1: a.read() 0 Q2: a.read() 1 



Precedence Order 
  A history H induce a partial order <H on its operations 

 op1 <H op2 iff  op1
end appears before op2

start in H 
 Quiz: Draw the graph of <H for the previous example 
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P1: a.read() 0 P2: a.write(1) 

Q1: a.read() 0 Q2: a.read() 1 



Sequential History 
  A history H is sequential iff 

 every opx
start is immediately followed a mathing opx

end 

 “every invocation is followed by its result” 

  Quiz 
 Is the following history sequential? Why? 

 If H is sequential, how is <H? 
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P1: a.read() 0 P2: a.write(1) 

Q1: a.read() 0 Q2: a.read() 1 



Sub-Histories and Equivalence 
  A Sub-History captures the local view of an execution 

  Process sub-history H | P 
 only keep events local to P 

  Object sub-history H | a 
 only keep events happening on a 

  Quiz: Write the sub-histories H | P and H | Q for 
 H = P1

start, Q1
start, P1

end, P2
start,Q1

end,P2
end,Q2

start,Q2
end 

  2 histories H1 and H2 are equivalent iff 
 for all processes P: H1 | P = H2 | P 
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Equivalence: Quiz 
  Are the 2 following histories equivalent? 
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P1: a.read() 0 P2: a.write(1) 

Q1: a.read() 0 Q2: a.read() 1 

P1: a.read() 0 P2: a.write(1) 

Q1: a.read() 0 Q2: a.read() 1 



Acceptable Histories 
  What we have seen so far 

 histories 
 the order they imply on the ops they contain 
 special case: sequential histories 
 comparing histories: equivalence (use sub-histories) 

  Our aim: capturing atomicity 
 i.e. defining how an “atomic” object should behave 
 i.e. defining which behaviour is acceptable, which is not 
 i.e. defining which histories are acceptable 
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Acceptable Histories: Intuition 
  Are the following histories acceptable? 

P1: a.read() 0 P2: a.write(1) 

Q1: a.read() 2 Q2: a.read() 0 

P1: a.read() 0 P2: a.write(1) 

Q1: a.read() 1 Q2: a.read() 1 

P1: a.read() 0 P2: a.write(1) 

Q1: a.read() 0 Q2: a.read() 1 



How to capture acceptability? 
  Which histories are acceptable? Which are not? 

  First step: focus on acceptable sequential histories 
 no concurrency 
 aim: capture sequential specification of the object 
 for R/W O: “reads return value of most recent earlier write” 
 define set of all “acceptable/legal” sequential histories 

  Second step: define acceptable concurrent histories 
 using acceptable sequential histories as reference 
 different ways to do this: different semantics of consistency! 
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Atomicity 
  History H is atomic iff 

 H can be extended into H’ by adding (optional) return events 
 ∃ acceptable sequential history S, so that S equivalent H’ 
 <H ⊆ <S 

  Comments 
 H’ needed to handle pending operations 
 S eq. H’ : process cannot distinguish between S and H’ 
 <H ⊆ <S : S cannot reorder events from H 

  Atomic Object: only accepts atomic histories 
  Also called “Linearizability” (Herlihy & Wing, 1990) 
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Example 
  Find a history S that shows that the following is atomic 

 reminder 1: S should be sequential and acceptable 
 reminder 2: S should be equivalent to the history below 
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P1: a.read() 0 P2: a.write(1) 

Q1: a.read() 0 Q2: a.read() 1 



Example 
  Interpretation 

 possible to find a point in each interval 
 so that resulting sequential history is acceptable 

 “Points of Linearizibility” 
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P1: a.read() 0 P2: a.write(1) 

Q1: a.read() 0 Q2: a.read() 1 



Case 2: Generalization 
  Previous definitions generalizable beyond R/W object 

 just need to redefine acceptable sequential histories 

  Example: queue: sequential specification 
 #(dequeue) ≤ #(enqueue) 
 op dequeuek return value passed by enqueuek 

  All other definitions follow 
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Key Properties of Atomicity 
  Locality: For a system made of multiple objects xi 

  H is atomic iff H | xi is atomic for all xi 

 i.e. composing atomic objects results in an atomic system 

  Non-blocking 
 pending operations can always complete (*) 
 * = provided they’re defined (cf. dequeue an empty queue) 
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Alternative Consistency Models 
  Sequential Consistency (Lamport, 1979) 

 H sequentially consistent iff  
∃ acceptable sequential history S, S equivalent to H 

  Difference 1: S can reorder operations! 
 Following history is sequentially consistent, but not atomic 

  Difference 2: Not a local property! 
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P1: a.read() 0 P2: a.write(1) 

Q1: a.read() 0 Q2: a.read() 0 



Alternative Consistency Model 
  (Strict) Serializability (Transactions, Databases) 

 very close to atomicity as defined here 
 except order <H defined on transactions 
 transactions: multiple operations 

  Important Consequences / Differences 
 strict serializability not a local property 
 it is a blocking property: 

sometimes transactions must abort 
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Summary 
  This session 

 formal approach to specifying legal parallel behaviours 

  Key notions: 
 processes, shared objects 
 history, sub-histories 
 sequential histories, legal histories, equivalent histories 

  Atomicity builds on all these notions 
 define legal // behaviour based on sequential specification 
 find an equivalent seq. history that meet specific criteria 

  Important to reason about parallel programs 
 specifications, proofs (manual, automatic), composition 
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