
SPP (Synchro et Prog Parallèle) 

Unit 9: Atomicity 

François Taïani 



Motivation 
  We have use the word “atomic” quite a few times 

 “this operation is (is not) atomic” 
 “this sequence of operation needs to be atomic” 

  What does this mean exactly? 
 Etymology: Ancient Greek ἄ - τοµος (cannot be cut) 
 Can this be captured formally? 

F. Taiani 2 



Case 1: Read / Write Objects 
  System model 

 read / write objects: 2 operations read() and write(..) 
 operations invoked by processes, run concurrently 
 an execution captured by an history 

  History 
 a sequence of events 
 two types of events: invocations, and return events 

  invocations labelled with 
 invoker, invoked object, parameter passed 

  return events pair-wise associated with an invocation 
 at most one return event per invocation 

F. Taiani 3 



Example 
  One shared object, two processes 

 history made of 8 events, 4 operation executions 
 History: P1

start, Q1
start, P1

end, P2
start,Q1

end,P2
end,Q2

start,Q2
end 

  Order exists between operations 
 P2 happens after P1. Q2 happens after P1, P2, Q1. 

 what about Q1? 
 How would you formally define this order? 

F. Taiani 4 

P1: a.read() 0 P2: a.write(1) 

Q1: a.read() 0 Q2: a.read() 1 



Precedence Order 
  A history H induce a partial order <H on its operations 

 op1 <H op2 iff  op1
end appears before op2

start in H 
 Quiz: Draw the graph of <H for the previous example 

F. Taiani 5 

P1: a.read() 0 P2: a.write(1) 

Q1: a.read() 0 Q2: a.read() 1 



Sequential History 
  A history H is sequential iff 

 every opx
start is immediately followed a mathing opx

end 

 “every invocation is followed by its result” 

  Quiz 
 Is the following history sequential? Why? 

 If H is sequential, how is <H? 

F. Taiani 6 

P1: a.read() 0 P2: a.write(1) 

Q1: a.read() 0 Q2: a.read() 1 



Sub-Histories and Equivalence 
  A Sub-History captures the local view of an execution 

  Process sub-history H | P 
 only keep events local to P 

  Object sub-history H | a 
 only keep events happening on a 

  Quiz: Write the sub-histories H | P and H | Q for 
 H = P1

start, Q1
start, P1

end, P2
start,Q1

end,P2
end,Q2

start,Q2
end 

  2 histories H1 and H2 are equivalent iff 
 for all processes P: H1 | P = H2 | P 

F. Taiani 7 



Equivalence: Quiz 
  Are the 2 following histories equivalent? 

F. Taiani 8 

P1: a.read() 0 P2: a.write(1) 

Q1: a.read() 0 Q2: a.read() 1 

P1: a.read() 0 P2: a.write(1) 

Q1: a.read() 0 Q2: a.read() 1 



Acceptable Histories 
  What we have seen so far 

 histories 
 the order they imply on the ops they contain 
 special case: sequential histories 
 comparing histories: equivalence (use sub-histories) 

  Our aim: capturing atomicity 
 i.e. defining how an “atomic” object should behave 
 i.e. defining which behaviour is acceptable, which is not 
 i.e. defining which histories are acceptable 

F. Taiani 9 



Acceptable Histories: Intuition 
  Are the following histories acceptable? 

P1: a.read() 0 P2: a.write(1) 

Q1: a.read() 2 Q2: a.read() 0 

P1: a.read() 0 P2: a.write(1) 

Q1: a.read() 1 Q2: a.read() 1 

P1: a.read() 0 P2: a.write(1) 

Q1: a.read() 0 Q2: a.read() 1 



How to capture acceptability? 
  Which histories are acceptable? Which are not? 

  First step: focus on acceptable sequential histories 
 no concurrency 
 aim: capture sequential specification of the object 
 for R/W O: “reads return value of most recent earlier write” 
 define set of all “acceptable/legal” sequential histories 

  Second step: define acceptable concurrent histories 
 using acceptable sequential histories as reference 
 different ways to do this: different semantics of consistency! 

F. Taiani 11 



Atomicity 
  History H is atomic iff 

 H can be extended into H’ by adding (optional) return events 
 ∃ acceptable sequential history S, so that S equivalent H’ 
 <H ⊆ <S 

  Comments 
 H’ needed to handle pending operations 
 S eq. H’ : process cannot distinguish between S and H’ 
 <H ⊆ <S : S cannot reorder events from H 

  Atomic Object: only accepts atomic histories 
  Also called “Linearizability” (Herlihy & Wing, 1990) 

F. Taiani 12 



Example 
  Find a history S that shows that the following is atomic 

 reminder 1: S should be sequential and acceptable 
 reminder 2: S should be equivalent to the history below 

F. Taiani 13 

P1: a.read() 0 P2: a.write(1) 

Q1: a.read() 0 Q2: a.read() 1 



Example 
  Interpretation 

 possible to find a point in each interval 
 so that resulting sequential history is acceptable 

 “Points of Linearizibility” 

F. Taiani 14 

P1: a.read() 0 P2: a.write(1) 

Q1: a.read() 0 Q2: a.read() 1 



Case 2: Generalization 
  Previous definitions generalizable beyond R/W object 

 just need to redefine acceptable sequential histories 

  Example: queue: sequential specification 
 #(dequeue) ≤ #(enqueue) 
 op dequeuek return value passed by enqueuek 

  All other definitions follow 

F. Taiani 15 



Key Properties of Atomicity 
  Locality: For a system made of multiple objects xi 

  H is atomic iff H | xi is atomic for all xi 

 i.e. composing atomic objects results in an atomic system 

  Non-blocking 
 pending operations can always complete (*) 
 * = provided they’re defined (cf. dequeue an empty queue) 

F. Taiani 16 



Alternative Consistency Models 
  Sequential Consistency (Lamport, 1979) 

 H sequentially consistent iff  
∃ acceptable sequential history S, S equivalent to H 

  Difference 1: S can reorder operations! 
 Following history is sequentially consistent, but not atomic 

  Difference 2: Not a local property! 

F. Taiani 17 

P1: a.read() 0 P2: a.write(1) 

Q1: a.read() 0 Q2: a.read() 0 



Alternative Consistency Model 
  (Strict) Serializability (Transactions, Databases) 

 very close to atomicity as defined here 
 except order <H defined on transactions 
 transactions: multiple operations 

  Important Consequences / Differences 
 strict serializability not a local property 
 it is a blocking property: 

sometimes transactions must abort 

F. Taiani 18 



Summary 
  This session 

 formal approach to specifying legal parallel behaviours 

  Key notions: 
 processes, shared objects 
 history, sub-histories 
 sequential histories, legal histories, equivalent histories 

  Atomicity builds on all these notions 
 define legal // behaviour based on sequential specification 
 find an equivalent seq. history that meet specific criteria 

  Important to reason about parallel programs 
 specifications, proofs (manual, automatic), composition 

F. Taiani 19 



References 
  Maurice P. Herlihy and Jeannette M. Wing. 1990. 

Linearizability: a correctness condition for concurrent 
objects. ACM Trans. Program. Lang. Syst. 12, 3 (July 
1990), 463-492. DOI=10.1145/78969.78972 
http://doi.acm.org/10.1145/78969.78972 

  Chapter 4 “Atomicity: Formal Definition and 
Properties” in Michel Raynal, Concurrent 
Programming: Algorithms, Principles, and 
Foundations, Springer, Jan 2013 , ISBN-13: 
978-3642320262 

F. Taiani 20 


