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Abstract

The past decade has seen an increasing use of complex
computer systems made of third party components to
develop mission critical applications. To insure the
dependability of those systems in a sound and maintainable
manner, technologies are needed to add fault-tolerance
mechanisms transparently, while maintaining efficiency,
high coverage, and evolvability. In this paper, we present
a generic framework that addresses this problem and can
be used within current industrial software. Our proposal is
based on a limited set of core concepts inspired from plant
biology and meta-object protocols. It provides separation of
concerns for the implementation of adaptive fault tolerance
strategies, while maintaining a global inter-level perception
of the system runtime behavior. We demonstrate its
practicality by using it to control the non-determinism of
a CORBA/UNIX system.

1 Introduction

In computer-based systems that are built upon numerous
software layers (OS, libraries, virtual machines, middle-
ware, etc.), system complexity demands the separation of
fault-tolerance concerns from the main functional design.
Dependability being a global property, any solution to this
problem must at the same time guaranty a high coverage
of the system components by the chosen fault-tolerant
mechanisms.

Computational Reflection has been proposed in the last
decade as a powerful means to address this issue. Reflection
is the ability of a computing system to act upon itself as
part of its own computation [12]. In the context of fault-
tolerance, the basic idea of reflection is to provide a system
with additional observation and control abilities to permit
(1) deviations from the specified behavior to be detected and

1François Taı̈ani is now working as a lecturer at the Computing
Department of Lancaster University (UK).

then (2) recovery strategies to be put in place with limited
intrusiveness to the system functions.

Architecturally, reflection introduces two distinct parts
in a computing system (Figure 1): a base level where
functional computation occurs, and a meta-level where
fault-tolerance mechanisms are implemented using a self-
representation of the system (which is called its meta-
model). This meta-model can be regarded as a kind
of “glue” that transparently connects the non-functional
fault-tolerance mechanisms to the functional computation.
In object-oriented systems, this transparent connection is
usually structured in terms of objects (at the base level) and
meta-objects (at the meta-level). Objects and meta-objects
interact through what is known as a Meta-Object Protocol -
MOP for short [8].

Base Level

Meta-Level

Functional 
Interfaces Meta 

Interfaces

Meta-Model

Figure 1. Architecture of a Reflective System

Although several works have shown that dependability
(as well as other non-functional aspects) can benefit
from reflection, major limitations prevent this technology
from scaling up with system complexity, layering and
information hiding. In a previous work [21] we have
proposed a new framework termed multi-level reflection
to overcome those limitations by extending reflection to
complex multi-layer architectures (we will come back to it
in more details in Section 2.2). We have shown that it was
an appealing framework to address the development of fault
tolerant strategies on top of complex system platforms. In
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developing this new approach we assumed the existence of
a Meta-Object Protocol (MOP) able to observe and control
a complex system at multiple abstraction levels. The design
and implementation of such a “multi-level” MOP is a
conceptual and technical challenge in its own right, which
we address in this paper.

The contribution of this paper is to show that, with
a limited number of novel reflective concepts, and con-
ventional object-oriented techniques, a multi-level Meta-
Object Protocol can be developed which supports multi-
level reflection on real-life industry grade platforms in an
efficient, lightweight and minimally intrusive way.

This article is organized as follows: in Section 2,
we briefly present some fault-tolerant systems based on
reflective computing and discuss their limitations. In
Section 3, we introduce the notion of semantic context to
better understand the nature of complex software systems.
Section 4 is then devoted to the actual presentation of
our new meta-object protocol, which isbased on the novel
notion of meta-markers. Sections 5 and 6 present an
application of the proposed MOP to a CORBA-POSIX
platform. Section 7 concludes the paper.

2 Problem statement and related work

2.1 Reflective fault-tolerant systems

Reflection has been used to develop fault-tolerant archi-
tectures based on object-oriented principles, and distributed
computing. Platforms such as GARF [4], MAUD [1], and
FRIENDS V2 [11] are representative of this trend. These
systems use the reflective features of their implementation
language (Smalltalk, HAL and OPENC++ respectively) to
provide reflective capabilities dedicated to fault-tolerance
and security. Using these reflective capabilities, a rich
set of fault-tolerance and security mechanisms can be
implemented within these architectures as reusable meta-
level components.

Reflection has also been used to harden runtime execu-
tives, such as real-time micro-kernels . Arlat et al. [2] for
instance have proposed a framework in which the internal
behavior of a real-time micro-kernel is partially exposed as
a set of temporal logic predicates. The predicates provide
an abstract representation (meta-model) of the micro-kernel
computation. Once combined into temporal logic formulae,
they can be compiled into meta-level wrappers for error
confinement and error recovery in order to enhance the
original kernel’s dependability.

Interestingly, these examples all use the reflective
capabilities of a single abstraction level: the SmallTalk
and C++ languages respectively for GARF and FRIENDS,
the actor and communication concepts of the HAL actor

language for MAUD, and kernel abstractions (events, sig-
nals, queues, locks, timers) for reflective real-time micro-
kernels. Being single-level, these approaches are blind to
any information or behavior that is not contained within the
target abstraction level. This limitation strongly hinders the
range of fault-tolerant mechanisms that can be developed
using single-level reflective approaches, in particular in
complex multi-layered systems, as we will see in the next
section.

2.2 Problem statement

To better understand the limitations mentioned above
and to illustrate the problem we want to tackle, let’s take
a core example that captures the multi-level nature of the
information required to master fault tolerant computing.

Consider for instance the active replication of a multi-
threaded server. Because active replication requires
replicated nodes to behave deterministically, the control
of the non-determinism induced by multi-threading has
been an active research area in recent years [14, 7, 3,
13]. One popular approach (under minimally constraining
assumptions) is to insure that all replicas follow the same
mutex acquisition pattern. This can be done either by
(i) serializing incoming requests [14], or (ii) using a
deterministic scheduler [7], or (iii) imposing a consensus
on mutex acquisition decisions [3, 13].

These solutions are very hard to realize with a single-
level reflective approach limited to a higher system
level (programming languages, application libraries, etc.).
Language-based reflection for instance is limited to the
programming model of its underlying language. In
most programming languages neither context switches,
nor critical sections, nor lock allocations (semaphores,
mutexes) are explicitly visible. A reflective approach based
on those languages cannot provide enough information on
the underlying runtime to control non-determinism [10].
More generally, higher system-level abstractions lack too
much information about low-level layers (hidden states, non
deterministic events, detailed implementation choices) to
permit the implementation of efficient and powerful fault-
tolerance mechanisms.

A single-level reflective approach limited to lower sys-
tem levels (OS, system libraries) does not solve the problem
either, as shown on Figure 2. On this Figure, the above-
mentioned solution (iii) is implemented using OS-level
reflection. Replication is realized as a reflective component
that intercepts mutex activity and insures that all replicas
follow the same consistent behavior. (Note that we assume
here that all mutex lock and unlock operations translate into
OS-level operations that can be intercepted.) Unfortunately,
in a complex multi-layer system, this approach rapidly
becomes intractable in practice because of the high number
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of mutex operations involved. For example, we recorded
that the commercial CORBA implementation ORBACUS

[6] could make up to 203 mutex calls (i.e. calls to functions
of the form pthread mutex xxx) for only one CORBA
request. Other popular CORBA middleware like TAO [18]
and OMNIORB [5] don’t make as many mutex operations,
but their numbers remain fairly high (respectively 52 and 64
calls). Modern locking technology (fast user locks, “thin”
locks) insures that those numerous mutex operations don’t
have a high performance cost locally. However, replicating
these operations introduces a communication overhead that
in some cases may be intractable. Napper et al. report
a 375% overhead in execution time when this approach
is used on a Java Virtual Machine running a database
benchmark, a performance price too high to pay in most
cases [13].

This scaling problem is not due to a major flaw
in the approach itself, but to the lack of any global
system vision. The key observation is that most lock
operations inside the middleware have no influence on the
observable determinism of the platform, and don’t need to
be replicated. The main challenge is thus to tell relevant
locks from the remaining ones. This distinction, however,
goes far beyond the OS programming model, and is not
available using only OS-level reflection.

Low-level reflection limits the efficiency of fault-
tolerance mechanisms because it can only provide a low-
context view of a system, and lacks global semantics about
the current system activity.

2.3 Multi-level reflection

To overcome the limitations of single-level reflection, we
have proposed Multi-Level Reflection in prior works [21,
20]. The key idea is to combine OS-level reflection with
information obtained from the middleware and application
layers in order to provide a powerful programming model
for fault-tolerance computing. In the case of the previous
example, multi-level reflection allows the identification
of the mutexes that are really relevant for the platform
determinism (Figure 3). By selecting those mutexes only, it
tremendously reduces the amount of observation that needs
to be distributed among the replicated nodes, and allows
approaches for the control of non-determinism to scale up
to realistic multi-layer platforms.

More generally, multi-level reflection is based on the
observation that a multi-layer system contains several over-
lapping programming logics. These logics offer different
viewpoints on the system that correspond to different
abstraction levels. At the OS communication API, for
instance, the network activity of a CORBA [15] process is
viewed as a succession of socket creations, deletions, sent
and received packets. Inside the middleware, the system is

up to 203 mutex operations
per request in middleware
(ORBacus)
[TAO: 52, omniORB: 64]

network

FTOS OSFT

middleware middleware

application application

node A node B

FT

Intercepted OS level operations 
that are replicated to insure replica 
determinism

Transparent replication mechanism, 
implemented as a meta-level 
reflective component. 

Caption:

Figure 2. Controlling non-determinism due to
multi-threading using single-level reflection

Only those mutex that do have 
an observable effect on the non-
determinism of the platform are 
replicated.

network

FT

OS OS

middleware middleware

application application

node A node B

FT

Figure 3. The example of Figure 2 addressed
using multi-level reflection

seen in terms of received requests, distributed events, and
marshaled parameters.

Each level of abstraction (OS kernel, system libraries,
middleware, application) can be reified into a corresponding
meta-model that exports the information that is available at
this level. However, as illustrated in the previous section,
each of these single-level meta-models is limited to the
information that is available at its corresponding abstraction
level: a meta-model that uses an open compiler to reify the
language constructs of the application code cannot give any
information about the thread management if threading is not
a first class entity of the considered language. In the same
vein, reifying the mutex-activity of the multi-threading
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library gives no indication of the request currently being
processed by the middleware, because the notion of remote
method invocation is not included in the programming
model of the operating system.

Multi-level reflection builds on the complementary
natures of the high and low levels found in a complex
system to extend their individual reflective capabilities. In
our previous work we have presented the principles and the
general architecture of multi-level reflection. We did not
however propose any concrete implementation mechanism
to support our vision. The contribution of this paper is
to present a concrete meta-object protocol that directly
supports multi-level reflection on realistic industry-grade
platforms. Our design is based on the novel notion of
semantic context, which we present in the next section.

3 A Context aware approach

In this section, we introduce the semantic context of a
low-level operation. This new concept aims at capturing the
nature of interactions between higher and lower abstraction
levels in complex multi-layer systems. It will be the starting
point of our new MOP design.

Consider the OS API of a complex multi-layer system.
Any invocation of the OS API is the result of some
computation process within the higher layers of the system.
Backtracking this computation process makes it possible
to understand the original purpose of a low-level OS
operation in the context of the higher-level activities. One
straightforward way of backtracking is for instance to
introspect the invocation stack of the thread that is invoking
an OS operation. In a multi-layer software such a stack
typically spans several layers and in many cases provides
an accurate understanding of the system current behavior.

A B

semantic
contexts

OS

internal
threading

library

[pthread_mutex_init()]
mutex creation call

execution path 
within
the middleware

Figure 4. Semantic context of a low-level
platform call (here pthread mutex init() )

Based on the core example of Section 2.2, Figure 4
shows how this approach can be applied on a POSIX
platform to control the non-determinism induced by multi-
threading. In Figure 4, A is some location within the

middleware code where a C++ object a is instantiated.
a supports automatic garbage collection. During its
construction, a mutex protecting its reference counter is
created (pthread mutex init() on the figure). Because the
middleware is internally layered, pthread mutex init() is not
directly invoked by a’s constructor, but instead is the result
of a sequence of nested calls.

On the same figure, B is some other location within the
middleware code where a queue structure b is initialized.
This queue is used to buffer incoming remote requests. Also
for thread safety, access to this queue (to add and remove
requests) is protected by a mutex, so that the instantiation
of b also causes pthread mutex init() to be invoked.

The mutexes created for a and b don’t serve the same
purpose, and don’t have the same effect on the determinism
of the middleware. The mutex created in Context A insures
serialization of reference counter operations. It does not
need to be controlled to insure determinism as it has no
observable effect at the application level. The mutex created
in Context B on the other hand determines the ordering
in which requests are dispatched to the application level.
It must be controlled to insure determinism [21]. Those
two situations cannot be distinguished at the OS level,
since by default no information is available regarding the
context in which those two mutexes are created and will
be used. They cannot be distinguished statically inside the
middleware code either, since the same code containing
pthread mutex init() is used to create both mutexes. This is
due to the internal layering of middleware platforms, which
typically contain their own internal threading libraries
(ACE for TAO, JTC for ORBACUS, etc.). Observing
the stack state of the current thread, however, allows
tracking back the sequence of nested invocations that
resulted in pthread mutex init() being invoked, and thus
enables pinpointing the location in the middleware code
(A or B) where the purpose of the mutex invocation
becomes explicit. Using the terminology of aspect-oriented
programming [9], we will call this kind of location (A or B)
the semantic joint point of pthread mutex init().

As any causality related notion, the concept of semantic
context is recursive. The semantic context of a low-level
operation must thus be defined with respect to what we will
term a semantic level. A semantic level is a collection of
possible semantic joint points (i.e. source code locations)
within a platform, so that any low-level operation can be
tracked back to at least one of the semantic joint points.
On Figure 4, the semantic level used to determine A and B
would contain most of the ORB main classes (request
queues, thread pools, requests) along with code related
to high-level non-functional mechanisms such as garbage
collection.
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Figure 5. Inter-level coordination of non-functional activity using meta-markers

4 A multi-level MOP for fault tolerance

In this section, we present the new multi-level meta-
object protocol (MOP) we have developed to support multi-
level reflection. This new MOP is based on the semantic
context notion we have just presented, and on a new
biology-inspired construct termed meta-marker. Meta-
markers allow the transparent transport of meta-information
between different abstraction levels. As such they build the
core of our new MOP.

4.1 Drought, phytohormones and meta-markers

In order to support multi-level reflection, our MOP
should reify semantic contexts at all abstraction levels
of the targeted system. To achieve this objective in a
lightweight, efficient and non-invasive manner, we derive
the notion of meta-marker from plant biology. Most
plants, and in particular trees, implement regulation loops
between their root system and their foliage using chemical
markers (phytohormones) that travel through their sap.
Abscisic Acid (ABA) for instance is a phytohormone that
is used to regulate water consumption in the leaves during
drought periods [17]. Acting as a signal of reduced water
availability in the soil, it is synthesized at the root level
before it is transported by the sap to trigger appropriate
leave responses (stomatal closure, leaf decay, etc.). In our
MOP, meta-markers play a similar role. In the same way
abscisic acid is transported “transparently” by a plant’s sap,
meta-markers rely on threads to convey meta-information
transparently between the higher- and lower-levels of a
complex software system.

More concretely, a meta-marker is an object that can be

attached and detached from a thread1 to realize multi-level
non-functional mechanisms.

class MetaMarker {
void attachToThread() ;
void detachFromThread() ;

};

Figure 5 illustrates how meta-markers can be used to
coordinate non-functional activities between the heteroge-
neous levels of a complex multi-layer system. First a meta-
marker is attached to the current active thread in some
higher layer of the system (application logic, business-
oriented middleware). As an object, this meta-marker
encapsulates information regarding the current behavior of
the system as observed at this high abstraction level. As
the thread travels down the layers of the system, the meta-
marker travels along. It remains transparent to any piece of
code that is unaware of it (“it is dormant”), thus guarantying
a strong separation of concerns between functional and non-
functional concerns.

When the thread reaches the OS layer and invokes an
OS operation, this invocation is intercepted by the OS
reflective facility. The interception mechanics of the OS
detects the presence of the meta-marker and activates it.
Once activated, the meta-marker can trigger appropriate
actions at the OS level to contribute to some non-functional
mechanism, on the basis of the high-level contextual
information it transports. By doing so, it creates a
transparent coordination channel between non-functional
components located at different abstraction levels.

1The idea relies on piggybacking facilities that enable information to
be attached to threads at runtime, a feature that can be found in most multi-
threading environments. In POSIX, for instance, this corresponds to the
functions pthread setspecific / pthread getspecific.
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Because they establish a communication channel be-
tween different abstraction levels within a complex system,
meta-markers are ideal to transport semantic contexts. In
the core example of Section 2.2 for instance, mutexes that
are relevant for the determinism of the platform can be
identified based on the semantic context of their creation.
They can thus be selected using meta-markers. Once
selected, appropriate measures can be taken to insure that
any future operation on these selected mutexes will be
intercepted. To implement this approach, two problems
must be solved:

(P1) the semantic context of each mutex creation must be
captured and attached to threads as a meta-marker;

(P2) once attached to a thread, this meta-marker should
select the mutexes that are relevant for determinism,
and insure that future invocations on these mutexes
will be reified to fault-tolerance components.

4.2 Meta-markers and semantic contexts

In order to address Problem P1, we first need to identify
an appropriate set of semantic joint points (cf. Section 3)
within the source code of the middleware. Consider for
instance the following code extract:

init_and_run_middleware(..) {
init_request_queue(..) ;
init_some_refcount_object(..) ;
...
run_ORB();

}

Assume this represents the initialization code of some
middleware written in C/C++. This code example
does not contain any object for simplicity reasons, but
a true object-oriented example would work the same.
init request queue(..) initializes the queue that buffers
incoming requests. The mutexes that this function creates
are relevant for the control of determinism. The remaining
lines (init some refcount object(..), ..., run ORB()) also
initialize mutexes, but those are not relevant for deter-
minism. These lines are the semantic joint points that
capture the mutex semantics of the middleware. The
line init request queue(..) represents the semantic context
of mutexes relevant for the platform determinism. The
remaining lines represent the semantic context of mutexes
not relevant for the platform determinism.

Because we don’t know exactly where and when
mutexes will be initialized in init request queue(..),
we annotate the middleware source code around
init request queue(..) with meta-marker activation.
This is shown on Figure 6.

MetaMarkerForRelevantMutex myMMarker() ;

myMMarker.attachToThread() ;
init_request_queue(..) ;
myMMarker.detachFromThread() ;

Figure 6. Semantic contexts as meta-markers

MetaMarkerForRelevantMutex is a specialized subclass
of MetaMarker. In the code extract, an instance of
MetaMarkerForRelevantMutex is attached to the thread
executing init request queue(..) and will be present until
this function returns. Assuming an appropriate set of
semantic joint points can be found in the middleware source
code, this approach solves Problem P1.

4.3 Meta-Markers in Action

To address Problem P2, we assume our OS has basic
reflective capabilities, similar to those found in the reflective
OS MUSE [22] (we explain in Section 5 how this can
be done on top of POSIX). In particular, MetaMutex
meta-objects can be attached dynamically to one or more
mutexes. A MetaMutex transparently intercepts any
operation invoked on the mutex it is associated with. It
can thus modify a mutex behavior, e.g. replicate mutex
operations across replicated nodes.

Figure 7 describes how this can be used to solve
Problem P2. On this figure the meta-marker used to solve
Problem P1 (MetaMarkerForRelevantMutex) is attached
to the active thread, and travels down the system layers
(Steps 1 and 2). When the thread reaches the OS and
attempts to create a new mutex, an interception library
diverts the mutex creation call, and tests for the presence
of this meta-marker on the thread. If no meta-marker is
present, control is returned to the base-level OS, and the
normal mutex creation occurs. If a meta-maker is detected,
the mutex creation is delegated to the meta-marker, which
decides what to do. In this case the meta-marker creates
the new mutex and attaches it to an appropriate meta-mutex
(Step 3). It then gives control back to the system, returning
the new mutex that has just been created, as the normal
mutex creation does. The mutexes that are instrumented
in this manner continue their life at the OS level, but
are now controlled by appropriate meta-mutexes. These
meta-mutexes will intercept any future operations on the
mutexes they control and divert these operations to the fault-
tolerance level (meta-level).

The mechanism shown on Figure 7 is not limited to
mutexes, and can be used each time the interception of some
low-level entities (mutexes, but also sockets) requires to
be conditioned by the activity of the system as observed
at some higher abstraction level. This defines a new
flavor of meta-object-protocols that can be used to provide
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Figure 7. Meta-markers in action

a powerful yet disciplined programming model for fault-
tolerance on complex multi-layer architectures.

5 Implementation issues

To validate the concrete value of meta-markers on
real-life platforms, we implemented a solution to the
example of Section 2.2 using the mechanisms we have just
presented. Our solution is a generic C++ library that can
be used to control the determinism of any C++ CORBA
implementation running on a POSIX compliant OS. In this
section we report on this library, and in the next section
we will explain how we used it to instrument a commercial
CORBA product (ORBACUS) running on a LINUX OS.

Our C++ library implements the interface presented on
Figure 8. We showed in a previous work that this kind
of meta-interface allows to control the determinism of
a request-oriented middleware in a multi-level reflective
manner [21]. Basically this meta-interface reifies the events
of a request life cycle that are relevant to the determinism
of the middleware, and makes these events available to
fault-tolerant mechanisms. It covers three main facets
of a request lifecycle: communication (reception, reply),
control path (reaching and leaving the application code),
and synchronization (“request contention points”). Request
contention points correspond to the mutexes that are
relevant for determinism. When the middleware attempts
to lock a relevant mutex during the processing of a request,

class MetaRequestLifecycle {

/** Communication **/
requestHasBeenReceived (RequestID);
replyHasBeenSent (RequestID);

/** Control Path **/
requestBeforeApplication (RequestID);
requestAfterApplication (RequestID);

/** Synchronisation **/
requestBeforeContentionPoint

(RequestID, RequestContentionPoint);
requestAfterContentionPoint

(RequestID, RequestContentionPoint);
};

Figure 8. The multi-level meta-interface to
control non-determinism

the lock operation is intercepted and requestBeforeCon-
tentionPoint is called. Symmetrically, when the middleware
tries to release the lock, the release is intercepted, and
requestAfterContentionPoint is called.

We implemented the communication and synchroniza-
tion facets of the meta-interface using active meta-markers.
Global request IDs similar to those found in the FT-CORBA
standard [16] were also implemented with meta-markers.
The control path facet was not directly implemented in the
library. We will address it in the next section.

The main effort in building the library went into provid-
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main

ORB_impl

(1) t1:resolve_initial_references

GIOPServerStarterThreaded
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POA_impl
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(5) t3: start
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Figure 9. High-level representation of the request processing in ORBACUS

ing basic OS-level meta-objects on top of a POSIX interface
using library interception. Using the LD PRELOAD
mechanism and the dlopen interface, our library provides
the classes MetaSocket and MetaMutex to intercept and
redefine the behavior of sockets and mutexes at the OS
level. It provides an abstract MetaMarker class to realize the
attach / detach operations of the meta-marker mechanism.
Two concrete meta-marker subclasses are based on this ab-
stract MetaMarker class: MetaMarkerForMutex intercepts
mutex creations, and MetaMarkerForSocket intercepts
socket creations. MetaMarkerForMutex corresponds to the
mechanism showed on Figure 7, and MetaMarkerForSocket
does the same for sockets. MetaMarkerForSocket was
needed to implement the communication facet, as we will
see.

These basic OS-level meta-objects and these different
meta-marker classes are the basis of the implementation of
the communication and synchronization facets. Our library
realizes the synchronization facet with two new classes:
RequestContentionPoint and ContentionPointFactory. Re-
questContentionPoint is a subclass of MetaMutex that
diverts all the operations made on a mutex to the methods
requestBeforeContentionPoint(..) and requestAfterCon-
tentionPoint(..) of the interface MetaRequestLifecycle
(Figure 8). ContentionPointFactory is a particular Meta-

MarkerForMutex that attaches a RequestContentionPoint
to each new mutex created by the thread it is attached to
(Step 4 of Figure 7).

The communication facet is realized in a similar way
with the classes MetaMarkerForSocket and MetaSocket.
In a CORBA process, sockets can be used to transport
information that is not related to CORBA (HTTP traffic, the
X11 windowing protocol, etc.). As for mutexes, CORBA
relevant sockets must be intercepted. The same meta-
marker mechanism shown on Figure 7 for mutexes can
thus be applied to sockets to realize the requestHasBeenRe-
ceived(..) and replyHasBeenSent(..) methods of the meta-
interface of Figure 8.

We also used meta-markers in the communication facet
to transport global request IDs across the different layers
of the system in a bottom up fashion: global request IDs
are piggybacked on requests, unmarshaled when the request
reception is intercepted, and encoded on the transporting
thread as a meta-marker.

6 Instrumenting an industrial platform

We have used the library we have just described to
instrument a commercial CORBA product with the meta-
interface of Figure 8. The key element in instrumenting
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(meta-corba) New meta-socket for socket 8 (meta-corba) In
LAAS::CORBARequestMetaSocket::accept (meta-corba) (6439) Received
Request with ID: 1:6436 (meta-corba) (6439) Before Contention Point 1
with RequestID: 1:6436 (meta-corba) (6439) After Contention Point 1
with RequestID: 1:6436 (meta-corba) (6439) Before Contention Point 2
with RequestID: 1:6436 (meta-corba) (6439) After Contention Point 2
with RequestID: 1:6436 (meta-corba) (6427) Before Contention Point 1
with RequestID: 1:6436 (meta-corba) (6427) After Contention Point 1
with RequestID: 1:6436 (meta-corba) (6427) Before application with
RequestID: 1:6436 Hello World!: 1 (meta-corba) (6427) After
application with RequestID: 1:6436 (meta-corba) (6427) Sending Reply
for Request with ID: 1:6436 (meta-corba) Destroying a meta-socket
CORBARequestMetaSocket

Figure 10. A trace of ORBACUS’ request processing as intercepted by our library

a concrete platform is to identify a semantic level where
the higher-level semantic of mutex and socket use is
explicitly apparent (Section 3). This cannot be done on
black box software, as it requires at least some high-
level understanding of the platform’s internals and of inter-
component interactions.

Using a dedicated reverse engineering tool [19] to
guide us, we were able to extract high-level behavioral
models of several popular CORBA implementations: TAO,
OMNIORB and ORBACUS. Figure 9 shows the high-level
model we obtained for ORBACUS. Many intermediate
classes and several internal libraries were abstracted away
to outline the core of the request processing. This kind of
model focuses on the path followed by CORBA requests
as they travel up and down the middleware. On Figure 9,
Invocation 6 (accept) by Thread t3 is where new CORBA
related sockets are created, and Invocations 17 (add) by
Thread t8 and 8 (get) by Thread t4 are where requests
encounter a contention point. The mutexes related to
this contention point are created along with the object
ThreadPool when Invocation 15 is executed by Thread t1.

Using this high-level model, we were able to identify
the semantic joint points where to introduce the necessary
meta-markers. We then used the approach illustrated
on Figure 6 to annotate those semantic joint points and
“hook” our generic multi-level library into ORBACUS. The
following code extract shows how we introduced contention
point reification into the middleware implementation:

// Extra code
contentionPointFactory.attachToThread();

// Original ORBacus code
pools_[i] = new ThreadPool(i, nthreads);

// Extra code
contentionPointFactory.detachFromThread();

Using this approach we were able to “weave” the
communication and synchronization facets of the meta-
interface MetaRequestLifecycle into ORBACUS with only

20 extra lines added to its runtime library (i.e. less
than 0.02% of the original library code!): 4 lines for the
synchronization facet, 6 for the communication facet, 3 for
the global request IDs, the remaining 7 being “#include”
statements. Because this weaving process relies on a high-
level representation of the middleware, it is highly robust
to change, and can be easily ported to new platforms, or
adapted as the middleware evolves into new versions.

The “control path” facet of the meta-interface MetaRe-
questLifecycle is easier to realize than the other facets.
It does not require any inter-level coordination, so we
decided to simply modify the IDL compiler of ORBACUS

to insert the appropriate code into the generated skeletons
that connect the middleware to the application layer. The
modification was quite easy and straightforward, adding
only 13 lines to the source code of ORBACUS’s IDL
compiler.

Figure 10 shows the result of this instrumentation when
the meta-interface MetaRequestLifecycle is simply used to
trace the request processing. On this trace, we see that only
two contention points (numbered 1 and 2) are hit only 3
times by a request being processed. Those 3 hits correspond
to the 3 underlying mutex operations that, according to our
analysis, must be intercepted to insure the determinism of
the middleware layer. This is a 67-fold improvement over
the 203 mutex operations per request which we reported on
in the introduction of this article (Section 2.2).

7 Conclusion

As complex software systems integrating many third
party components are increasingly used for mission critical
applications, flexible engineering approaches are needed
to address the dependability of those platforms in a
maintainable, adaptable, and principled manner.

In this paper we have presented a new meta-object
protocol (MOP) that addresses this technical challenge. Our
MOP is based on a core set of new concepts (semantic
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contexts, semantic joint points, and meta-markers) inspired
from traditional meta-object protocols and from our prior
work about multi-level reflection. The key idea is to permit
the transparent coordination of meta-level components that
are located at different abstraction levels of a complex
multi-layer system. The result is a generic framework for
fault-tolerance computing that provides a high degree of
separation of concerns and uplifts the limitations of former
proposals.

More generally this work can be seen as a transposition
to multi-layer architectures of Aspect-Oriented Program-
ming notions. In the near future, we plan to investigate more
deeply this promising connection.
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