
Coupling Metrics for Aspect-Oriented Programming: A
Systematic Review of Maintainability Studies

(Extended Version)

Rachel Burrows1, Alessandro Garcia2, François Taïani1

1 Computing Department, Lancaster University, UK
{rachel.burrows, francois.taiani}@comp.lancs.ac.uk

2 Informatics Department, Pontifical Catholic University of Rio de Janeiro, Brazil
afgarcia@inf.puc-rio.br

Abstract. Over the last few years, a growing number of studies have explored
how Aspect-Oriented Programming (AOP) might impact software
maintainability. Most of the studies use coupling metrics to assess the impact of
AOP mechanisms on maintainability attributes such as design stability.
Unfortunately, the use of such metrics is fraught with dangers, which have so
far not been thoroughly investigated. To clarify this problem, this paper
presents a systematic review of recent AOP maintainability studies. We look at
attributes most frequently used as indicators of maintainability in current
aspect-oriented (AO) programs; we investigate whether coupling metrics are an
effective surrogate to measure theses attributes; we study the extent to which
AOP abstractions and mechanisms are covered by used coupling metrics; and
we analyse whether AO coupling metrics meet popular theoretical validation
criteria. Our review consolidates data from recent research results, highlights
circumstances when the applied coupling measures are suitable to AO programs
and draws attention to deficiencies where coupling metrics need to be
improved.

Keywords: Coupling, Aspect-Oriented Programming, Systematic Review,
Maintainability

1 Introduction

Aspect-oriented programming (AOP)[2] is now well established in both academic and
industrial circles, and is increasingly being adopted by designers of mainstream
implementation frameworks (e.g. JBoss and Spring). AOP aims at improving the
modularity and maintainability of crosscutting concerns (e.g. security, exception
handling, caching) in complex software systems. It does so by allowing programmers
to factor out these concerns into well-modularised entities (e.g. aspects and advices)
that are then woven into the rest of the system using a range of composition
mechanisms, from pointcuts and advices, to inter-type declarations[27], and aspect
collaboration interfaces[8].

Unfortunately, and in spite of AOP’s claims to modularity, it is widely
acknowledged that AOP mechanisms introduce new intricate forms of coupling[33],
which in turn might jeopardise maintainability[1,4]. To explore this, a growing
number of exploratory studies have recently investigated how maintainability might
be impacted by the new forms of coupling introduced by AOP mechanisms[e.g
19,20,26].

 The metrics used by these studies are typically taken from the
literature[10,11,33,37,39] and are assumed to effectively capture coupling
phenomenon in AOP software. However, the use of coupling metrics is fraught with
dangers, which as far as AOP maintainability is concerned have not yet been
thoroughly investigated. In order to measure coupling effectively a metrics suite
should fulfill a number of key requirements. For instance: the suite should take into
account all the composition mechanisms offered by the targeted paradigm[29,31]; the
metrics definitions should be formalised according to well-accepted validation
frameworks, e.g. Kitchenham’s validation framework[30]; and they should take into
account important coupling dimensions, such as coupling type or strength. If these
criteria are not fully satisfied, maintainability studies of AOP might draw artificial or
inaccurate conclusion and, worse, might mislead programmers about the potential
benefits and dangers of AOP mechanisms regarding software maintenance.

Unfortunately, the validity and reliability of coupling metrics as indicators of
maintainability in AOP systems remains predominantly untested. In particular, there
has been no systematic review on the use of coupling metrics in AOP maintainability
studies. Inspired from medical research, a systematic review is a fundamental
empirical instrument based on a literature analysis that seeks to identify flaws and
research gaps in existing work by focusing on explicit research questions[29]. This
paper proposes such a systematic review with the aim to pinpoint situations where
existing coupling metrics have been (or not) effective as surrogate measures for key
maintainability attributes. Our systematic review consolidates data from a range of
relavent AOP studies, highlights circumstances when the applied coupling measures
are suitable to AO programs and draws attention to deficiencies where coupling
metrics needs to be improved.

The remainder of this paper provides some background on AOP and coupling
measurement (Section 2). We then discuss the design of our systematic review and
present its results (Section 3 and 4). Finally, we discuss our findings (Sections 5) and
conclude (Section 6).

2 AOP and Coupling Measurement

This section gives a brief discussion on three representative AOP languages and
also gives a background on coupling metrics for AOP.

2.1 AOP Languages and Constructs

One of the reasons why the impact of AOP on maintainability is difficult to study
pertains to the inherent heterogeneity of aspect-oriented mechanisms and languages.
Different AOP languages tend to incarnate distinct blends of AOP and use different
encapsulation and composition mechanisms. They might also borrow abstractions and
composition mechanisms from other programming paradigms, such as collaboration
languages (CaesarJ), feature-oriented programming (CaesarJ), and subject-oriented
programming (HyperJ). Most AOP languages tend to encompass conventional AOP
properties such as joinpoint models, advice and aspects, or their equivalent, but each
possesses unique features that make cross-language assessment difficult.
 Table 1 lists ten such features for AspectJ[2], HyperJ[23] and CaesarJ[8], three of
the most popular AOP languages. For instance, AspectJ supports advanced dynamic
pointcut designators, such as “cflow”. HyperJ uses hyperspace modules to modularise
crosscutting behaviour as well as non-crosscutting behaviour. HyperJ thus does not
distinguish explicitly between aspects and classes in the way AspectJ does. Other
abstractions unique to HyperJ include Compositions Relationships. These use merge-
like operators to define how surrounding modules should be assembled. Finally,
CaesarJ supports the use of virtual classes to implement a more pluggable
crosscutting behaviour. This pluggable behaviour is connected with the base code
through Aspect Collaboration Interfaces.

Table 1. AO abstractions and mechanisms unique to three main AOP languages

2.2 Existing AO Coupling Metrics

Coupling metrics aim to measure the level of interdependency between modules
within a program[12], thus assessing a code’s modularisation, and indirectly
maintainability. Unfortunately, each language’s unique features introduce new forms
of coupling, which cannot always readily be mapped onto existing concepts (Table 1).
This creates a challenge when designing coupling metrics for AOP, as these metrics
should ideally take into account each language’s unique features, while still providing
a fair basis for comparison multiple AOP languages. This is particularly difficult.

A number of coupling metrics have so far been proposed for AO programs. Some
are adapted from object-orientation, and transposed to account for AO mechanisms.
For instance, both Ceccato and Tonella[10] and Sant’Anna et al[36] have proposed
coupling metrics adapted from an object-oriented (OO) metrics suite by Chidamber
and Kemerer [11]. These metrics can be applied to both OO and AO programs. This is
especially useful in empirical studies that perform aspect-aware refactoring.
Unfortunately, because these metrics are not specific to AOP, they might overlook the
unique intricate forms of coupling described in Table 1.

Zhao[39] uses dependency graphs to measure some AO mechanisms that are not
measured individually in either Ceccato and Tonella or Sant’Anna’s suites. Zhao’s
suite contains metrics that measure coupling sourced from AO abstractions and
mechanisms independently of OO abstractions and mechanisms.

Coupling metrics are however rarely used as a direct representation of
maintainability, but instead are typically contrasted against a particular
maintainability attribute, such as code stability. The choice of this attribute (or
attributes) might in turn influence which coupling metrics is the most suitable.

3 Systematic Review

This section describes the objectives and questions (Section 3.1) as well as the
strategical steps carried out in the systematic review.

3.1 Objectives and Questions

The aim of our systematic review is to analyse the effectiveness of coupling
metrics in existing AO empirical studies as a predictor of maintainability, and in
particular focus on the following four research questions:
a) Which external attributes are most frequently used to indicate maintainability in

current AO programs?
b) Are used coupling metrics effective surrogate measures for software

maintainability?
c) Are all AOP abstractions and mechanisms covered in the design of the used

coupling metrics?
d) Do AO coupling metrics meet well-established theoretical validation criteria?

3.2 Review Strategy

Searches for papers took place in 14 renowned online journal banks or were those
published in recognised conference papers such as AOSD(Aspect-Oriented Software
Development) and ECOOP (European Conference on Object-Oriented Programming).
We gave priorities to publications in conferences with an acceptance rate below 30%.
Relavent papers were found from ACM, SpringerLink, IEEE, Google Scholar,
Lancaster University Online Library, and two were collected from other sources.

Sampling Criteria: From this base we sampled papers that met the following
criteria. Each selected paper had to:

• use an empirical study to measure maintainability attributes in AOP;
• and use coupling metrics within the study.

Due to low retrieval rate from journal banks, alternative approaches were also
used. This included both consulting references on already-found papers and searching
specifically for papers we knew met our criteria (from previous knowledge). The
distribution of collected research is recorded in the review results (Section 4).

Exracted Data: We recorded which independent / dependent variables where
measured, the goals of measurement, the type of study, measurement results, which
coupling metrics were used, their origin, and whether the applied metrics were
specifically for AOP or adapted from another programming technique (e.g. OOP).

4 Results

A final set of 12 papers was finally obtained (Table 2), which is a typical sample size
for systematic reviews in software engineering[28].

Table 2. Distribution of Studies

Electronic Journal # Retrieved # Rejected # Used
ACM 4 0 4
IEEE 2 1 1
SpringerLink 3 1 2
L.U. Online Library 5 2 3
Other 4 2 2
Total 18 6 12

4.1 Assessed Maintainability Attributes

It is difficult to select coupling metrics to assess maintainability as definitions are
often open to interpretations. For instance in[24], maintainability is “the ease with
which a software system or component can be modified to correct faults, improve
performance, or other attributes, or adapt to a changed environment”.

There is also no consensus about the external and internal attributes are the most
significant indicators of maintainability. This is apparent in the empirical studies from
the diverse selection of metrics used. Two main processes were recorded to select

suitable coupling metrics. Firstly, many studies used coupling metrics previously
selected in similar AOP empirical studies. Secondly, results showed the Goal-
Question-Metric (GQM) [6] style approach is a common technique used to select
appropriate metrics in empirical studies. This approach guides researchers to: (i)
define the goal of measuring maintainability, then (ii) derive external attributes that
are possible indicators of maintainability, then (iii) derive from these a set of internal
measurable attributes, and finally (iv) derive a set of metrics to measure the internal
measurable attributes. Unfortunately, using GQM still leaves a large degree of
interpretation to its users, who might independently reach divergent conclusions. One
further problem with this uncertainty is that the metric selection process can become
circular, especially when measuring maintainability, as external quality attributes are
interconnected. For instance, stability indicates maintainability, yet maintainability
can be seen as an indicator of stability.

Similar techniques for selecting appropriate metrics in empirical studies have been
used in [33]. This study decided to measure attributes such as maintainability,
reusability and reliability as indicators of maintainability. From this list, internal
attributes such as separation of concerns, coupling, complexity, cohesion and size
were selected. The final set of selected coupling metrics was then defined based upon
these internal attributes. We can therefore see that uncertainty on key external
attributes has great impact on the remainder of the metric selection process.

This lack of conformity on these attributes has unsurprisingly affected the selected
coupling metrics. For instance, maintainability is measured in studies[7,15,17]
through the application of 9 metrics to measure size, coupling, cohesion and
separation of concerns metrics. In[10,33] complexity is in addition derived as an
external attribute contributing to maintainability. We return to this topic in Section 5.

Similar problems have been observed in maintainability studies of object-oriented
programming (OOP) this has been highlighted in a survey of existing OO empirical
studies and their methodologies to predict external quality attributes[5].

Many studies acknowledge that modularity, coupling, cohesion and complexity are
internal attributes that affect maintainability. Interestingly, error-proneness was the
attribute that was not explicitly derived as an indicator of maintainability.

In short, different interpretations of maintainability and its subsequent derived
attributes influence the coupling metrics chosen or defined within the context of an
empirical study. This may explain the wide range of coupling metrics observed in
AOP empirical studies, which we review in the next subsections.

4.2 Coupling Metrics Used to Measure Maintainability

We identified 27 coupling metrics in our sample set of studies. A representative
subset of these metrics is shown in Table 3. For each metric, the table lists it’s name,
description, and six characteristics.

Generally, the most frequent metrics were adapted from object orientation (OO).
Among them, the most common were Coupling Between Components (CBC) and
Depth of Inheritance Tree (DIT), appearing in 66% of the studies. Adapted metrics
hold the advantage of being based upon OO metrics that are widely used, and can be
assumed reliable. The (implicit) reasoning is that adapting OO metrics to AOP

maintains their usefulness. This however might no hold: DIT for instance combines
both the implicit AO inheritance with the traditional OO inheritance. It thus considers
two very different coupling sources together. These sources may have different
affects upon maintainability and it may be beneficial to consider these seperately.

In contrast, some of the studies also use coupling metrics developed for AOP, such
as Coupling on Advice Execution (CAE) and Number of degree Diffusion Pointcuts
(dPC). These metrics enable a more in-depth analysis of the system coupling
behaviour, as they consider finer-grained langauge constructs. However, they are
more likely to behave unexpectedly, being underdeveloped.

No AO coupling metrics were found to be interchangeable, i.e. none were found to
be applicable to different AO languages without any ambiguity. This is probably due
to the heterogeneity of AO programming abstractions and mechanisms that makes it
very hard to define metrics accurately across multiple AO languages.

The majority of metrics found in our study assess outgoing coupling connections
(indicated as “Fan Out” in Table 3). This can be seen as a weakness, as both incoming
and outgoing coupling connections help refactoring decisions, as discussed in[31].

Table 3. Properties of used coupling metrics

Metric Description

(DIT) Depth of Inheritance
Tree [10]

Longest path from class / aspect to hierarchial root.

(RFM) Response for a
Module [10]

Methods and advices potentially executed in response to
a message received by a given module.

(NOC) No. of Children
[10]

Immediate sub-classes / aspects of a module.

(CBC) Coupling Between
Components [10]

Number of classes / aspects to which a class / aspect is
coupled.

(CAE) Coupling on Advice
Execution [10]

No. of aspects containing advice possibly triggered by
execution of operations in a given module.

(dPC) No. of Degree
Diffusion Pointcuts [31]

No. of modules depending on pointcuts defined in the
module.

(InC) No. of In-Different
Concerns [31]

No. of different concerns to which a module is
participating.

Metric Measurement

Granularity
Measurement

Entity
Measurement

Type
Fan
In /
Fan
Out

Inter-
changeable

AO /
Adapted

(DIT) class / aspect class / aspect inheritance n/a no adapted
(RFM) module method / advice environmental fan out no adapted
(NOC) module class / aspect inheritance n/a no adapted
(CBC) class / aspect class / aspect environmental fan out no adapted
(CAE) module aspect environmental fan out no AO
(dPC) module module environmental fan in no AO
(InC) module concern environmental n/a no AO

4.3 Measured AOP Mechanisms

OO coupling metrics can be adapted to take into account AO mechanisms, producing
a seemingly equivalent measure. However, this approach might miss some of specific
needs of AO programs. We now review how the mechanisms of the AOP languages
most commonly used in maintainability studies of AOP were accounted for in
coupling measures, and draw attention to mechanisms that are frequently overlooked.

Table 4 lists the mechanisms and abstractions used in the coupling metrics of our
study. One first challenge arises from the ambiguity of many notions. For instance,
seven metrics use “modules” as their level of granularity, but what is module might
vary across languages. In AspectJ an aspect may be considered a module – containing
advice, pointcuts and intertype declarations, yet in CaesarJ, each advice forms its own
module. More generally, many coupling metrics use ambiguously terms (“module”,
“concern”, or “component”) which might be mapped to widely varying constructs in
different languages. This hampers the ability of the metrics to draw cross-language
comparisons[20].

Table 4. AO mechanisms and abstractions accounted for in used coupling metrics

Abstraction /
Mechanism

No. of
Metrics

Measurement
Entity

Measurement
Granularity

Singular
Entity
Metric

Module 15 8 12 5
Component 1 0 0 0
Concern 7 5 7 2
Pointcut 3 0 0 0
Joinpoint 2 2 0 2
Intertype Declaration 1 1 0 0
Aspect 7 4 4 1
Advice 3 1 0 0

Another challenge comes from the fact that certain phenomenon are best analysed

by looking at the base and aspect codes separately. For instance, as a program
evolves, it may lose its original structure. However, in AO programs, the base level
and aspect level often evolve independently and have different structures.
Understanding how each evolution impacts structure thus requires that each be
investigated separately. This is not done in most of the empirical studies we found.

We also noted that the majority of used AO metric suites did not focus on interface
complexity. This is a problem as AO systems are at risk of creating complex
interfaces by extracting code which is heavily dependent on the surrounding base
code, and metrics are needed to identify problematic situations[33].

More generally, few studies look at the connection between maintainability and
specific AO mechanisms. For instance Response for a Module (RFM) measures
connections from a module to methods / advices. This is useful in analysing coupling
on a “per module” basis, but does not distinguish between individual AO language
constructs. For instance, it adds up intertype declarations jointly with advice as they

both provide functionality that insert extra code into the normal execution flow of the
system. However intertype declarations differ from other types of advice as they
inject new members (e.g. attributes) into the base code. Coupling metrics have been
proposed to address this problem and measure singular mechanisms, such as advice,
pointcuts, joinpoints and some intertype declarations[10,26,36], but have rarely been
used in maintainability studies.

To sum up, no study used metrics to measure constructs unique to AO
programming languages, and very few measured finer-grained language constructs.
Although this depends on the particular goals of each maintainability study, this is
generally problematic as each mechanism within a particular language has the
potential to affect maintainability differently, and should therefore be analysed in its
own right.

4.4 Validation of Coupling Metrics

Metrics are useful indicators only if they have been validated. There are two
complementary approaches to validate software metrics, empirical validation and
theoretical validation[30]. We will focus on the latter. In our context, theoretical
validation tests that a coupling metric is accurately measuring coupling and there is
evidence that the metric can be an indirect measure of maintainability.

Here we consider the 8 validity properties suggested by Kitchenham[30]. The
theoretical criteria are split into two categories: (i) properties to be addressed by all
metrics; and (ii) properties to be satisfied by metrics used as indirect measures. [3] has
already used the first criteria on coupling metrics for AO programs. We offer some
alternative viewpoints here, and also evaluate the coupling metrics against properties
that indirect measures should possess. When we applied this framework to the 27
coupling metrics found in our review, we identified three potential violations of these
criteria, discussed below.

A valid measure must obey the ‘Representation Condition’. This criterion states that
there should be a homomorphism between the numerical relation system and the
measureable entities. In other words a coupling metric should accurately express the
relationship between the parts of the system that it claims to measure. It also implies
that coupling metrics should be intuitive of our understanding of program
coupling[30]. For instance, a program with a CBC value of 6 should be more coupled
than a program with a CBC value of 5. This metric holds true to it’s definition,
however if a study is using CBC as a representation of coupling within a system this
validation criteria becomes questionable. When measuring coupling we often do not
perceive each connection as equal. There are different types and strengths of
coupling. If we consider two AO systems; the first with 5 coupling connections via
intertype declarations, and the second with 5 coupling connections via advice. Even
though both systems contain 5 coupling connections, they are not equivalent, and are
not equally interdependent. Various sources and types of coupling may influence the
interdependency of a system in multiple ways. We found no metrics in the studies that
took this finer differences into account.

Each unit of an attribute contributing to a valid measure is equivalent. We are
assuming that units (modules) that are measured alongside each other are equivalent.

There are some AO coupling metrics that only consider coupling from one language
‘unit’. For example, the CAE metric satisfies this property as each connection counted
by metric value involves an advice method. However, many metrics used in empirical
studies of AOP assume that counting coupling connections between AO modules is
equivalent to coupling connections between OO modules. As mentioned b, classes
and aspects are often measured together as equivalent modules (e.g in DIT), yet we do
not have evidence that they have the same effect upon maintainability, thus violating
this criteria.

There should be an underlying model to justify its construction. To give good
reason for the creation of coupling metrics, there should be underlying evidence that
the metric will be an effective indicator of maintainability. Unfortunately, this
criterion definition is somewhat circular in the case of maintainability; metrics are
often already constructed and applied before supporting this underlying theory and
justifying their construction. In OOP it is widely accepted that there is a relationship
between coupling and external quality attributes. Because AOP and OOP share
similarities, we could infer that metrics that measure a specific form of coupling in
OOP hold a similar potential when adapted to AOP (such as DIT, CBC). This
however needs to be validated. This need is even more acute for metrics specific to
AOP (e.g. CAE), as we have less information on how coupling induced by AOP-
specific mechanisms correlate with maintainability.

5 Discussion

We first discuss the potential threats to the validity of our study (5.1), and then revisit
our original research questions (5.2) in the light of the results we have just discussed.

5.1 Threats to Validity

Our study raises both internal and external validity issues. In terms of internal
validity, our study is based on 12 papers that matched our criteria (Section 4). This
number is not high however this is in line with systematic reviews in software
engineering, which often rely on approximately 10 target papers[28]. The size of the
sample should however be kept in mind when assessing the generality of our results.

In terms of external validity, we identified a number strengths and liabilities in the
state-of-the-art of AO coupling metrics. However, this list is certainly not exhaustive,
and does no cover a number of broader issues about AO metrics and maintainability.

For instance, there are certain forms of (semantic) module dependencies that cannot
be quantified by conventional coupling metrics, such as those captured by network
analysis[40]. The same argument applies to Net Option Values and Design Structure
Matrices[9,32]. Finally, AO empirical studies often rely on multiple metrics suites to
measure module complexity, module cohesion, and concern properties. Considering
coupling in isolation thus limits our horizon, a broader review would be
complementary to this work.

5.2 Analysis and Implications

The design and use of AO coupling metrics needs to be improved. Analysis of
findings revealed problems corresponding to each of the four original research
questions.

The selection of metrics to measure maintainability in AO studies is ambiguous.
Many issues contribute to this. Some studies specified key external attributes that
contribute to the maintainability of a program. The subjectivity and variations of these
external attributes(Section 4.1) causes uncertainty of the most effective metrics to
select to measure them. Also, deriving attributes that influence maintainability has
shown to be a circular process e.g. stability affects maintainability, and
maintainability affect stability. Empirical validation may aid researchers to converge
on a smaller set of validated coupling metrics. Better-defined metrics will help this
process as well (Section 4.4).

Adapted OO metrics are useful to cross-compare AO and OO programs. Naturally,
OO coupling metrics that successfully served as valid indicators of maintainability are
likely to be re-used. In fact, this assumption applies to many studies that refactor OO
programs with aspects. However, it is important that adapted metrics are not the only
ones used. Adapted metrics (such as CBC) overlook characteristics that are unique to
a particular AOP language as discussed in Section 4.3. For instance, this metric
cannot be used to pinpoint the coupling caused by particular AOP constructs, yet
specific AOP constructs may impact unexpectedly upon the maintainability of a
program. Also, coupling introduced by unique AOP constructs should be also
measured as single entities. Otherwise, we are unable to gain in-depth knowledge
about the impact of AOP on maintainability.

Some AO metrics provide initial means to measure coupling introduced by specific
AO language constructs[10,33,39]. These fine-grained metrics make it easier to locate
program elements that are responsible for positive (or negative) results. For example,
if we can correlate a high CAE coupling value with poor maintainability, we may
infer that specific advice types in AOP languages are harmful.

Also, results from fine-grained AO coupling metrics may facilitate the
identification of solutions for classical problems in AOP, such as pointcut fragility
[26]. Pointcut fragility is the phenomenon associated with instabilities observed in
poincut specifications in the presence of changes. It is commonly assumed the syntax-
based nature of most pointcut designators is the cause of their fragilities [26]. There
are speculations that certain pointcut designators, such as cflow (Section 2.1), cause
more instability. These hypotheses re-enforce the need for metrics that quantify
specialised types of coupling links between aspectual code and base code. Such
envisaged fine-grained metrics would enable us to better understand the effects of
particular AOP mechanisms upon maintainability. We need to know which specific
mechanisms are typically the cause of high coupling, and does coupling via different
mechanisms have the same impact upon maintainability.

There are other important dimensions of coupling beyond granularity, such as
direction, or strength of coupling [4]. We identified that the analysed 27 metrics for
AOP do overlook important coupling dimensions. This might be misleading
conclusions, as different coupling dimensions may affect maintainability in different
ways.

 Most AO coupling metrics are created with AspectJ as the target
language[10,33,36]. However, alternative languages, such as HyperJ and CaesarJ,
support AOP based on different mechanisms (Table 1). Section 4.3 discussed the need
for coupling metrics tailored to these unique mechanisms of alternative AOP
languages. It is also required to define coupling metrics that are interchangeable
across these multiple AOP languages.

Not all coupling metrics meet popular validation criteria (Section4.4). Without
theoretical validation there is the risk of using metrics that are providing inaccurate
results. Even subtle adaptations to widely accepted OO metrics need to be validated.
A recurring point in this review was that certain metric definitions assume different
language constructs can be measured together as equivalent entities. For instance,
coupling via class inheritance in OO programs might not demonstrate equivalent
maintainability effects as aspect inheritance in AO programs. Similar effects might
also be overlooked in other forms of module specialisations in AOP, such as intertype
declarations. Therefore it might not be appropriate to quantify together heterogeneous
specialisation forms in AOP.

Liabilities of AO coupling metrics are not restricted to unsatisfactory theoretical
validation. Their empirical validation is also limited, and the statistical relevance of
coupling metrics’ results is compromised. For example, metrics adapted from OOP
remain invalidated within the context of AOP. It would be wrong to assume that such
adapted metrics can be similarly interpreted in the context of AO software
maintainability.

6 Conclusions

Conducting the systematic review has presented valuable insights into current trends
on coupling measurement for AOP. This has consequently highlighted the need for
fine-grained metrics that consider specific AOP constructs. Existing metrics that are
frequently used are therefore in danger of overlooking key contributors to
maintainability.

For this reason, there is a niche in current maintainability studies of AOP to use
coupling metrics that: (i) take specific language constructs into account, (ii)
distinguish between the various dimensions of coupling, and (iii) can be applied
unambiguously to a variety of AOP languages.

We have also noticed that the maintainability studies of AOP overly concentrate on
static coupling metrics. Dynamic coupling metrics [1] for AOP have not been applied
in all the analysed studies. This came as a surprise as many AO composition
mechanisms rely on the behavioural program semantics. Also, key maintainability
attributes, such as error proneness (Section 4.1), are never explicitly derived as an
assessment goal.

Validating new metrics is a non-trivial matter. Kitchenham raised the problem that
validating metrics solely with predictive models can be problematic [29]. Without
theoretical validation, metrics might not be suitable indirect measures of
maintainability. It is important to consider the context that a metric is being applied
and whether it is an accurate representation of maintainability in AO systems.

Therefore, even AO metrics adapted from empirically-validated OO metrics, can fail
to be theoretically sound predictors of maintainability. In fact, our systematic review
found that some AO metrics do not obey the representation condition and other
criteria.

However, the above goals are difficult to address in one approach. For instance,
defining fine-grained metrics to analyse language specific mechanisms is conflicting
with the goal of having course-grained metrics that can be applied across multiple
AOP languages. Unfortunately, all these goals are crucial for an in-depth comparison
of AOP mechanisms. As part of our future works we aim to undertake empirical
studies to explore how the goals we have identified may be reconciled in a unified
approach.

References

1. Arisholm, E., Briand, L., Foyen, A.: Dynamic Coupling Measurement for Object-Oriented
Software. IEEE Trans. Soft. Eng. 30(8) (2004) 491-506

2. The AspectJ Prog. Guide, http://eclipse.org/aspectj
3. Bartsch, M., Harrison, R.: An Evaluation of Coupling Measures for AOP. LATE Workshop

AOSD (2006)
4. Briand, L., Daly, J., Wüst, J.: A Unified Framework for Coupling Measurement in Object-

Oriented Systems. IEEE Trans. Software Eng. 25(1) (1999) 91-121
5. Briand, L., Wüst, J. Empirical Studies of Quality Models in Object-Oriented Systems,

Advances in Computers. Academic Press (2002)
6. Basili, V., et al.: GQM Paradigm. Comp. Encyclopedia of Soft. Eng. JW&S 1 (1994) 528-

532
7. Cacho, N. et al.: Composing design patterns: a scalability study of aspect-oriented

programming. AOSD’06 (2006) 109 – 121
8. CaesarJ homepage, http://caesarj.org
9. Cai, Y., Sullivan, K.J.: Modularity Analysis of Logical Design Models. ASE 21 (2006) 91-

102.
10.Ceccato, M., Tonella P.: Measuring the Effects of Software Aspectization. WARE cd-rom

(2004)
11.Chidamber, S., Kemerer, C.: A Metrics Suite for OO Design. IEEE Trans. Soft. Eng. 20(6)

(1994) 476-493
12.Fenton, N. E., Pfleeger, S. L.: Software Metrics: a Rigorous and Practical Approach. 2nd ed.

PWS Publishing Co Boston (1998)
13.Figueiredo, E., et al.: Assessing Aspect-Oriented Artifacts: Towards a Tool-Supported

Quantitative Method. ECOOP (2005)
14.Filho, F.C., et al.: Exceptions and aspects: the devil is in the details. FSE 14 (2006) 152-156
15.Filho, F.C., Garcia, A. and Rubira, C.M.F.: A quantitative study on the aspectization of

exception handling. In Proc. ECOOP (2005)
16.Garcia, A., et al.: On the modular representation of architectural aspects. EWSA (2006)
17.Garcia, A. et al.: Separation of Concerns in Multi-Agent Systems: An Empirical Study. In

Software Engineering for Multi-Agent Systems with Aspects and Patterns. J. Brazilian
Comp. Soc. 1(8) (2004) 57-72

18.Garcia, A. et al.: Aspectizing Multi-Agent Systems: From Architecture to Implementation..
In R. Choren, A. Garcia, C. Lucena, & A. Romanovsky (Eds.): Software engineering for
multi-agent systems III. LNCS, Vol. 3390. Springer-Verlag, (2004) 121-143

19.Garcia, A. et al.: Modularizing Design Patterns with Aspects: A Quantitative Study. In
Proc. AOSD (2005) 3-14.

20.Greenwood, P. et al.: On the Impact of Aspectual Decompositions on Design Stability: An
Empirical Study. ECOOP (2007) 176-200

21.Harrison, R., Counsell, S., & Nithi., R.: An Overview of Object-Oriented Design Metrics.
In Proc. STEP (1997) 230-234.

22.Hitz M, Montezeri, B.: Measuring Coupling and Cohesion in Object-Oriented Systems. In
Proc. Int. Symposium on Applied Corporate Computing (1995)

23.Hyper/J home page, http://www.research.ibm.com/hyperspace/HyperJ.htm
24. IEEE Glossaries, http://www.computer.org/portal/site/seportal/index.jsp
25.JBoss AOP, http://labs.jboss.com/jbossaop
26.Kastner, C., Apel, S., and Batory, D.: Case Study Implementing Features Using AspectJ. In

Proc. SPLC (2007) 223-232.
27.Kiczales, G. et al.: Aspect-Oriented Programming. ECOOP (1997) 220-242
28.Kitchenham, B., et al.: Systematic Literature Reviews in Software Engineering – A

Systematic Literature Review. Information and Software Technology (2008)
29.Kitchenham, B.: Procedures for Performing Systematic Reviews. Joint Tech. Rep. S.E.G.

(2004)
30.Kitchenham, B., Pfleeger, S.L., & Fenton, N.: Towards a Framework for Software

Validation Measures. IEEE TSE, 21(12) (1995) 929-944
31.Kulesza, U. et al.: Quantifying the Effects of Aspect-Oriented Programming: A Maintenance

Study. In Proc. ICSM (2006) 223-233
32.Lopes, C. V., Bajracharya, S.K.: An analysis of modularity in aspect oriented design. AOSD

(2005)15-26.
33.Marchetto, A..: A Concerns-based Metrics Suite for Web Applications. INFOCOMP journal

of computer science 4 (3) (2004)
34.Pressman, R.S.: Software Engineering: a Practitioner’s Approach. McGraw Hill NY (1987)
35.Sant’Anna, C. et al.: On the Modularity of Software Architectures: A Concern-Driven

Measurement Framework. In Proc ECSA (2007)
36.Sant'Anna, C. et al.: On the Reuse and Maintenance of Aspect-Oriented Software: An

Assessment Framework. In Proc. SBES (2003) 19-34
37.Sant’Anna, C. et al.: On the Modularity of Software Architectures: A Concern-Driven

Measurement Framework. In Proc. ECSA (2008)
38.Spring AOP, http://www.springframework.org
39.Zhao, J.: Measuring Coupling in Aspect-Oriented Systems. Int. Soft. Metrics Symp. (2004)
40.Zimmermann, T., Nagappan, N.: Predicting defects using network analysis on dependency

graphs. ICSE (2008) 531-540

