
Reflections on Aspects and Configurable Protocols

Matti Hiltunen
AT&T Labs - Research

Florham Park, NJ 07932, USA
hiltunen@att.com

François Taı̈ani
Computing Department

Lancaster University
Lancaster LA1 4WA, UK

taiani@comp.lancs.ac.uk

Richard Schlichting
AT&T Labs - Research

Florham Park, NJ 07932, USA
rick@research.att.com

ABSTRACT
The goals of aspect oriented software development (AOSD)
and frameworks for configurable protocols (CPs) are similar
in many respects. AOSD allows the specification of cross-
cutting concerns called aspects as separate modules that are
woven with the base program as needed. CPs are oriented
towards building protocols or services with different quality
of service (QoS) properties and attributes out of collections
of independent modules, with each configuration customiz-
ing the service for a given application and execution envi-
ronment. As AOSD evolves to address issues in areas such
as middleware, operating systems, and distributed comput-
ing that have traditionally been the domain of CPs, lessons
learned from the development of these frameworks could be
useful. The purpose of this paper is to draw parallels be-
tween AOSD and CP frameworks, with a specific focus on
the Cactus framework and how it compares and contrasts
with the aspect-oriented paradigm.

Categories and Subject Descriptors
D.3.3 [Language Constructs and Features]: Frame-
works; D.1.0 [Programming Techniques]: General

Keywords
Configurable software, extensible software

1. INTRODUCTION
The need to deal with non-functional requirements has

long been recognized as a factor that increases the complex-
ity of software. These requirements include broad system
attributes such as fault tolerance, timeliness, and security—
quality of service (QoS) attributes—as well as more targeted
programming issues such as exception handling, memory
layout, and debugging. While these requirements span a
broad range of concerns and occur in a wide variety of con-
texts from single machines to large distributed systems, they
are all unified by the fact that their realization requires code

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD 06, March 20–24, 2006, Bonn, Germany
Copyright 2006 ACM 1-59593-300-X/06/03 ...$5.00.

beyond that needed to implement the base functionality of
the software. As such, non-functional requirements often
complicate the software by imposing “nonlinear” control
flow that is difficult to implement cleanly in normal pro-
cedural programming models. Research related to this issue
has been the focus of a number of diverse communities and
efforts, including reflection [44], aspect oriented software de-
velopment (AOSD) [28], and configurable network protocols
and distributed services (CP) [4, 22].

The goal of this paper is to draw parallels between the ap-
proaches developed for AOSD and CP, with a special focus
on relating lessons learned from the development and use of
the Cactus framework [4, 24] that are relevant for AOSD.
Cactus is one of a number of systems that have been devel-
oped over the years to support highly modular implementa-
tions of network subsystems, individual network protocols,
and services in distributed systems. Many of the early sys-
tems such as System V STREAMS [40] and the x-kernel [26]
have composition and execution models that are oriented to-
wards hierarchical or linear combinations of protocol mod-
ules, i.e., network stacks. However, while sufficient for tradi-
tional layered network subsystems, the constraints imposed
by linear execution make it difficult to use these systems for
higher-level protocols and services in which non-functional
requirements are more prominent. As one example, for a
data transport service, these requirements may include mes-
sage reliability, preservation of message ordering, flow and
congestion control, timeliness properties such as bounded
maximum latency or jitter, and security properties such as
confidentiality, integrity, and non-repudiation. In much the
same way as with AOSD, the cross-cutting nature of these
requirements argues for new models and new programming
paradigms.

The Cactus composition and execution model is designed
to address issues related to non-functional requirements
by supporting fine-grain non-hierarchical composition and
event-driven execution. In Cactus, a service such as group
communication or QoS enhancements for distributed ob-
ject systems [18] is realized by composing together software
modules called micro-protocols into a software framework.
This framework—essentially a runtime system—supports an
event-driven execution model in which events are raised
and fielded by the event handlers that make up the micro-
protocols. This execution model is the key mechanism for
supporting non-functional requirements since it allows, in
essence, interleaved execution of modules. Furthermore,
Cactus as well as other frameworks support dynamic adapta-
tion of the micro-protocol configuration, that is, the runtime

activation and deactivation of software modules [23, 38].
The parallels between the Cactus programming model and

that used in AOSD and languages such as AspectJ are
compelling—micro-protocols can be viewed as aspects and
event handlers as advices, for example. While such analogies
may be interesting in their own right, their true value lies
in enabling lessons drawn from one domain to be applied
in the other. The primary contribution of this paper is to
do just that. This effort is especially timely since AOSD is
currently being extended from its traditional programming
language orientation to software systems such as operating
systems, embedded systems, middleware, and distributed
systems, areas that have long been addressed by researchers
in CP. Furthermore, features such as runtime adaptation
and customizable QoS attributes are gaining interest in the
AOSD community.

This paper is organized as follows. Section 2 provides
some background on AOSD, and reviews recent system-
oriented developments in the area. Section 3 introduces
Cactus and characterizes it in terms of AO computing. Sec-
tion 4 outlines lessons we have learned—and that we think
could be useful for future AO systems—in our work on using
Cactus to implement modular configurable services ranging
from low-level transport protocols to middleware and appli-
cations. Section 5 provides more extensive examples of the
use of Cactus, and section 6 provides discussion on the re-
lationship between AOSD and Cactus, on issues related to
implementing customizable QoS attributes, and on related
work on other CP frameworks. Finally, section 7 provides
some concluding remarks.

2. BACKGROUND
Aspect Oriented Software Development (AOSD) [15] al-

lows the separation of cross-cutting concerns into well-
encapsulated entities called aspects. An aspect is a collection
of advices, segments of code that collectively implement a
particular concern (e.g., logging, security). In a non-AO sys-
tem, this code would be scattered across numerous system
modules, producing an entangled architecture that is diffi-
cult to develop, maintain, and extend. In an AO system, this
code is modularized as aspects and systematically combined
with the rest of the system through the process of weav-
ing. Weaving is defined by the joinpoint and composition
models. Joinpoints are points of interest in the execution
of a program. The joinpoint model defines how joinpoints
are structured and categorized, and how they relate to the
execution of the system. In an object-oriented system for
instance, the joinpoint model would typically include object
creations, method calls, and attribute access. The compo-
sition model of an AO platform describes the mechanisms
by which joinpoints and advices are brought together. This
typically involves the use of a pointcut description language,
i.e., a language that allows the definition of sets of joinpoints
(called pointcuts) using quantifiers and predicates.

While originally limited to programming languages, AOSD
has expanded to encompass system architectures, and is now
being used as a structuring technique for system-level com-
ponents such as middleware [30] and operating systems [2].
In such systems, the joinpoint model abstracts away from
the actual implementation language being used and reflects
higher-level entities of the system itself. For instance, in an
operating system, the joinpoint model may cover scheduling
events such as hardware interrupts and context switches, as

well as process life-cycle events such as creation, blocking,
and termination.

Composition models have also evolved to support these
new uses of AOSD, covering issues such as how overlapping
aspects are combined (ordering, compatibilities) and how
aspects are instantiated (implicitly, explicitly). New models
also address the interfacing of aspects with the base code,
either directly through pointcut expression as in AspectJ
[27] or indirectly through roles and weavelets as in CaesarJ
[32].

Dynamic behavior has become increasingly important in
modern AO platforms and has had an impact on both join-
point and composition models. While early versions of As-
pectJ were only able to describe joinpoints as static source
code locations [27], modern AO frameworks allow joinpoints
that are defined by the (dynamic) execution of the under-
lying platform. For example, the cflow pointcut descriptor
designates execution points that correspond to a particular
call stack state (e.g., the creation of an object from class A
only when invoked from a class B). The impact of dynamic
concerns on composition models has also been significant.
The instantiation model of aspects—when and how aspect
instances are created—is now an integral part of AO frame-
works. Dynamic weaving of aspects, where the activation
or removal of an aspect is performed at run-time possibly
as the result of the system’s own computation process, is
increasingly regarded as an elegant way to solve complex is-
sues of dynamic adaptation and self-reconfiguration [7, 32,
35, 36, 34].

3. CACTUS DESIGN AND IMPLEMENTA-
TION METHODOLOGY

Cactus is a design framework and runtime system for im-
plementing and executing configurable services based on an
event-driven execution model. Cactus has been used to build
a wide variety of services ranging from low-level communi-
cation services analogous to UDP or TCP, to middleware
services such as group membership and group remote proce-
dure call, to application-level services such as a configurable
distributed system monitoring service.

This section describes how Cactus is used to design and
implement services where abstract service properties and
QoS attributes are implemented as separate modules that
can be configured together to provide customized service in-
stances with the chosen set of properties.

3.1 Cactus design approach
The Cactus design approach for constructing highly-

customizable services is illustrated in figure 1. First, the
useful abstract properties or features of the service are iden-
tified. Useful features can be determined, for example, by
studying existing implementations or designs for the par-
ticular service. Second, these features are implemented as
configurable modules. The goal of the implementation is
to maximize configurability, while minimizing the perfor-
mance overhead, i.e., the performance difference between a
monolithic implementation of a service and a configurable
implementation that provides equivalent guarantees. Con-
figurability is maximized by not introducing configuration
constraints between the modules that implement abstract
properties. Consider two abstract properties p1 and p2. If
it makes sense for a service to have property p1 and not p2,

ImplementationIdentify

Properties

Existing Services

Service Abstraction

Properties of Service

Service Abstraction

Micro−protocols

Configurable Service

Figure 1: Design of a configurable service

p2 and not p1, and p1 and p2, then ideally the modules m1

and m2 implementing properties p1 and p2 should be able
to be used separately or together. See [21] for details.

3.2 History of Cactus
Configurable communication protocols and other services

such as file systems, database systems, and middleware have
been around since System V STREAMS [40]. Such proto-
cols are typically implemented as collections of modules that
can be combined into different configurations, which allows
their functionality to be customized based on application
requirements and the characteristics of the underlying net-
work. For example, one application may require that mes-
sages be delivered reliably and in order while another may
not, or use of a given network might be optimized by using
a particular type of congestion control. Most frameworks
for configurable communication protocols dictate a layered,
or hierarchical, composition model for the modules in which
each module interacts only with modules immediately above
and below it in the hierarchy. Examples of such frameworks
include the x-kernel [26], Horus [39], and Ensemble [38].

While hierarchical protocol composition frameworks have
been successful, we found them too limiting for the complex
protocols often used to implement fault-tolerant distributed
systems and services [22, 33]. Specifically, we found that
modules that implement fine-grained logical properties of
such protocols often need to interact more than allowed by
strict hierarchical composition. In terms of AO program-
ming, we observed that abstract service properties are often
cross-cutting concerns that require processing at many dif-
ferent points of the message flow through a protocol or the
flow of a service request through a service. Therefore, we
developed a more flexible composition model based on event-
driven execution. This model, implemented in the Cactus
system (as well as its predecessor, Coyote [4]) allows “inter-
leaving” of module execution by using events as the primary
control flow mechanism.

3.3 Cactus programming model
The Cactus model is based on a two-level view of sys-

tem composition as illustrated in figure 2: a system is con-
structed from services, where each service is then composed
of modules that implement the abstract properties of the
service. Services are composed using the traditional lay-
ered approach, while the modules within services—called
micro-protocols in Cactus—are organized non-hierarchically
and interact with one another by raising and fielding events.
In contrast with the traditional layered composition ap-
proaches, the modules do not need to be linearly ordered
and their interactions can be much richer. In fact, this
model allows the execution of different modules to be ar-
bitrarily interleaved. The result is a model that supports
flexible interaction and data sharing between modules, but

pr
ot

oc
ol

m
4

m
ic

ro
−

protocol
micro−

m5

m
icro−protocol

m
6

composite protocol for S2

System
micro−protocol m2

event handler h1

Local data
Shared data structures

Service S1

Service S2

Service S3

micro−protocol m1

micro−protocol m2

micro−protocol
m3

event handler h2

event handler h3

Figure 2: Two-level composition model

also allows the strict separation and proscribed interaction
through a uniform protocol interface between independent
services where appropriate.

Figure 3 illustrates in more detail a configurable service
implemented using Cactus, in particular, a Configurable
Transport Protocol (CTP) [46]. A service is implemented
as a composite protocol, with each service property or other
functional component implemented as a micro-protocol. A
micro-protocol is, in turn, structured as a collection of event
handlers that are executed when a specified event occurs.
Events are used to signify state changes of interest, such as
“message arrival from the network”. When such an event
occurs, all event handlers bound to that event are executed.
Thus, Cactus imposes an event-driven design and program-
ming paradigm, where a micro-protocol designer has to de-
cide what events are relevant for the micro-protocol being
implemented and for each such event, what are the actions
that this micro-protocol should take when the event occurs.

. . .

API: Open, Close, Push

Micro−protocols

. . .

Events

C
on

fig
ur

ab
le

 T
ra

ns
po

rt
 P

ro
to

co
l

Ordering

Reliability

Flow Control

Congestion Control

MSG FROM USER

SEGMENT FROM USER

SEGMENT FROM NET

CONGESTION DETECTED

Figure 3: CTP composite protocol

While the event-driven composition approach could be im-
plemented as a new event-based programming language or
as event-based extensions to an existing programming lan-
guage, we have chosen to implement the model as a set of
conventions and a software library. This has made it possi-
ble to implement Cactus in different programming languages
including C, C++, and Java. The Cactus library provides
a variety of operations for managing events and event han-
dlers, including operations for binding a handler to a spec-
ified event and for raising an event, which causes all the
handlers bound to that event to be executed. An event
can also be raised with a specified delay to implement time-
driven execution (delayed event), and with either blocking
or non-blocking semantics on the thread raising the event.

The order of handler execution can also be specified if de-
sired. Other operations are available for unbinding handlers,
creating and deleting events, halting event execution, and
canceling a delayed event. Handler execution is atomic with
respect to concurrency, i.e., a handler is executed to comple-
tion before any other handler is started unless it voluntarily
yields the CPU.

Micro-protocols are created dynamically, typically at ser-
vice startup time but also during execution to implement
adaptive behavior [23]. Furthermore, multiple instances of
the same micro-protocol can be created and exist simultane-
ously. Using multiple instances of the same micro-protocol
is useful in cases such as group communication—one in-
stance of a micro-protocol is created for each communication
partner—or cryptography—multiple instances of the same
DES micro-protocols can be instantiated to create seman-
tics similar to 3DES. Micro-protocols can have arguments
and often maintain some internal state.

Event handlers have two types of arguments, static ar-
guments passed to the handler in the bind operation and
dynamic arguments passed to the handler in the raise op-
eration. Thus, the static arguments remain the same for
each execution of the handler, while the dynamic arguments
change for each execution. Static arguments are typically
used to give direction to the micro-protocols execution (e.g.,
an encryption key to be used by the micro-protocol), while
dynamic arguments are typically messages or service re-
quests received by the service.

Events can be passed as arguments to micro-protocols at
initialization and as static or dynamic arguments to event
handlers.

3.4 Example
Figure 4 provides a simple example that illustrates some

of the features of Cactus. This figure shows a very simple
micro-protocol (SampleLogger) for message logging consist-
ing of one event handler (LogMessage) and an initialization
section. This micro-protocol can be used to log a sample
of messages originating from a set of specified IP addresses
(sources), specifically, one in every freq messages. The
event handler illustrates the use of both static and dynamic
arguments; the former include the IP address to monitor
passed in the bind operation, while the latter includes each
message that arrives. Specifically, since the handler LogMes-
sage only checks messages from one IP address, the micro-
protocol binds the same handler with different IP addresses
for each IP address specified in the set. Thus, when the
event occurs, each bound instance of the handler checks the
message for the source IP address specified for this handler.
Naturally, this is a simplified example, since such an imple-
mentation could be very inefficient in practice if the sets of
IP addresses are large.

The example also illustrates that the event to which the
handler is bound can be passed as an argument to the micro-
protocol. This allows the same micro-protocol to be used for
different events indicating message arrival. Finally, the fig-
ure shows how a group communication protocol could create
several instances of this micro-protocol to log messages from
different group members at different frequencies.

Note that the example micro-protocol code in figure 4
uses a pseudo-code notation for composite protocols, micro-
protocols, event handlers, and event handling operations.
As indicated above, the Cactus model is implemented in

micro-protocol SampleLogger(int freq, IPset sources,
event Ev) {

int counter, myFreq;

handler LogMessage(IP sid, Message msg) {
if (msg.source == sid) {

counter++;
if (counter == myFreq) {

System.log(toString(msg)); counter = 0; }
}

}
initial {

counter = 0; myFreq = freq;
for each source in sources do {

Ev.bind(LogMessage, source); }
}

}
protocol GroupCommunication(int groupID) {

initial {
msgFromGroup = new Event(”MsgArrivalEvent”);
dangerSet = new IPset(”123.456.78.90”, . . .);
friendlySet = new IPset(”321.654.87.09”, . . .);
new SampleLogger(10,dangerSet,msgFromGroup);
new SampleLogger(100,friendlySet,msgFromGroup); }

}

Figure 4: Example micro-protocol

each programming language as a library of event handling
operations and a runtime system, as well as a set of conven-
tions on how the logical concepts in the model are mapped to
concrete entities provided by the underlying programming
language. Thus, the concrete syntax of event handling op-
erations and parameter passing are different depending on
the language.

3.5 Mapping Cactus to AOSD concepts
The different elements comprising the Cactus program-

ming model can easily be viewed from an AO perspective.
Micro-protocols are encapsulating units that contain event
handlers, and can be seen as aspects. Event handlers con-
sume event occurrences, and can been seen as advices. Event
occurrences that result from a raise operation represent a
particular point of interest in the execution flow of the sys-
tem, and can be seen as joinpoints, and event raise sites as
joinpoint shadows. By binding to an event type (simply re-
ferred to as “an event” in the following) a handler receives
all occurrences of this event, making events comparable to
pointcuts and the event binding mechanism comparable to
a composition model. In this respect, Cactus is very sim-
ilar to the concept of event-based AOP that has recently
emerged [14].

Unlike AOSD, however, Cactus does not provide a point-
cut description language or a quantification mechanism
other than the use of event names. While a handler can
in principle be bound to several events to give a disjunctive
combination of pointcuts—the handler is executed if event
A or event B occurs—a given handler is more commonly
bound only to one event, with separate handlers within a
micro-protocol used to handle different events. The overall
functionality of the micro-protocol thus truly cross-cuts the
implementation of the service or protocol.

4. LESSONS FROM CACTUS
In this section, we describe a set of features we have found

useful in Cactus when constructing distributed customizable

services and that we believe could be instrumental when ap-
plying AO programming in such domains. For each feature,
we discuss the feature and its use in Cactus, and compare
it to the mechanisms available in current AOP platforms.
These features also form the backdrop for sections 5 and 6.
In section 5, we present two concrete services that have been
implemented using Cactus, while in section 6 we discuss the
respective merits of Cactus, AO, and other approaches to
realizing configurable distributed services.

4.1 Application defined joinpoints
While AOP traditionally defines joinpoints syntactically

in terms of programming language entities such as variables,
procedures, and classes, we have found that joinpoints or
events that convey more application-specific meaning are of-
ten required. For example, consider a configurable reliable
multicast service with micro-protocols ensuring attributes
such as reliability, FIFO ordering, and consistent total order-
ing of messages. In such a service, a stability micro-protocol
is often used to keep track of when each message has been
received by all group members, that is, when the message
becomes stable. Numerous other micro-protocols use mes-
sage stability to trigger actions; for example, a garbage col-
lection micro-protocol can safely delete the message once it
is stable or an archiving micro-protocol might move stable
messages to disk. Having the stability micro-protocol raise
an event when a message becomes stable is an easy way of
communicating this information to an arbitrary number of
other micro-protocols.

AO systems do not directly support such “semantic” join-
points, although there are several possible ways to achieve
a similar effect. One is to trigger a dynamic joinpoint in
the base program by creating an object or updating a field,
with the convention that this joinpoint should be interpreted
with a particular semantics (e.g., a message is now stable).
A variant of this approach is to use a naming convention
that carries application-specific semantics. For instance, a
pointcut expression like call(* *.print*(..)) can match any
method printing information on a console, provided that
the original program followed the convention that any such
method and only these methods start with “print”.

Embedding higher-level semantics in names can, however,
become laborious when multiple facets must be encoded or
when additional organizational naming conventions must be
taken into account. One solution can be to structure the
program so that names only need to expose one piece of
semantic information at a time. This can, however, lead
to a counter-intuitive structure and a general fragmentation
of the whole program. This name-oriented approach also
makes it difficult to modify the semantics attached to a join-
point. For example, suppose that, in addition to the “print”
convention, methods that handle confidential information
must contain the string “Confidential”. If the program is
changed so that a print method processes confidential infor-
mation where it previously did not, all locations calling this
method must be changed along with the method’s name.

Overall, we view such workarounds as awkward ways of
achieving the desired effect and believe that allowing the
specification of such semantic joinpoints would be useful
for AOSD. The general interest raised by annotation-based
pointcuts, in particular with the new Java meta-data facil-
ity provided by Java 1.5, is a step in this direction [10, 43,
34, 6]. Such annotations can convey semantic information

in much the same way as Cactus events can.

4.2 Asynchronous joinpoints
Cactus supports two modes of event raise, synchronous

and asynchronous. In the synchronous case, the handlers
bound to the event are executed before control returns to the
micro-protocol that invoked raise. This is similar to typical
AO approaches where all advices are executed before the
base functionality continues execution.

In contrast, in the asynchronous case, control returns to
the invoker of the raise immediately, possibly before the han-
dlers are executed. Asynchronous event occurrences have
turned out to be useful both as a programming tool and
when optimizing the execution of a composite Cactus pro-
tocol. As a programming tool, we have found asynchronous
events to be very useful in protocol engineering, and we an-
ticipate they would also be useful in other contexts such as
logging or profiling where data collection does not need to
be tightly synchronized with execution of the base program.

Asynchronous event execution also makes it easier for
the runtime system to optimize execution since handlers do
not need to be executed immediately. Our different Cac-
tus implementations (in C, Java, and C++) have exploited
this factor by using different strategies for scheduling asyn-
chronous event execution. One implementation strategy is
simply to rely on the multi-threading capabilities of the un-
derlying operating system or JVM. It is also possible to im-
plement lightweight schedulers inside the Cactus runtime
system to optimize predictability and performance. In fact,
the actual implementation has no impact on the program-
ming model as long as it respects the Cactus event-handling
semantics. This is particularly useful when there is limited
threading support provided, as might be the case in em-
bedded systems or operating system kernels. For example,
we used deadline-based non-preemptive scheduling imple-
mented by an event queue and a single dispatcher thread in
our real-time version of Cactus [24].

To our knowledge, only the CASS platform provides asyn-
chronous joinpoints comparable to Cactus asynchronous
events [11]. While the CAM/DAOP platform allows ad-
vices activated at the same joinpoint to execute in parallel,
control only returns to the base program when the last ad-
vice terminates [35]. It is interesting to note that both CASS
and CAM/DAOP have been developed in the context of dis-
tributed aspects, in which parallel and asynchronous execu-
tion are natural choices. Traditional AO systems could em-
ulate asynchronous joinpoints by explicitly creating a new
thread that then executes the real function of the advice.
This is not very elegant, however, and it also leaves all
scheduling decisions to the underlying OS or JVM sched-
uler, thus precluding any domain-specific strategies as done
in Cactus.

4.3 Time-driven aspects
The passage of time is an important concern for many

micro-protocols implementing QoS attributes. For example,
a reliability micro-protocol needs to retransmit a message
after a time period or a checkpointing micro-protocol needs
to store the program state at some time interval. In Cac-
tus, time-driven execution is implemented by allowing asyn-
chronous events to be raised with a specified delay, that is,

rid = event.raise(. . ., delay);

This “delayed raise” returns a handle to a (future) occur-

rence of the event that can be used to cancel this occurrence
if necessary. This is particularly useful for implementing
watchdogs. For example, a timed event can be raised when
a message is sent that requires an acknowledgment, and then
canceled when the acknowledgment arrives. As a result, if
no acknowledgment arrives in time, the timed event is exe-
cuted and some remedial action can be taken.

To the best of our knowledge, no AOP platform explicitly
supports time-triggered joinpoints. This obviously cannot
be realized by delaying an advice with a sleep function, since
the advice would then block the base program and any other
pending aspects. A possible workaround is to spawn a new
thread from within the advice, but this is far less satisfactory
than the direct programmatic support of time constraints.

Time-related concerns could be added in AOP platforms
using a number of approaches. One is to extend asyn-
chronous joinpoints with a specified delay. Another possibil-
ity is to extend AOP platforms that support state-machine
based pointcuts (e.g., JAsCO [43]) or event-based AO frame-
works (e.g., [14]) with temporal pointcut descriptors to spec-
ify temporal properties. However, these approaches alone
would not permit the cancellation of an asynchronous join-
point analogous to event cancellation in Cactus, something
that would probably require the ability to handle joinpoints
as first-class entities. We return to this last point below in
section 4.8.

4.4 Parameterized aspects
We have found it very useful to be able to specify argu-

ments to event handlers both at binding time (“weaving”)
and when event occurrences are raised (“joinpoints”). In
Cactus, these correspond to the bind and raise operations.
When an event is raised, the event handler gets two sets of
arguments: static arguments assigned at bind time and dy-
namic arguments assigned at the time the raise operation is
executed.

The passing of arguments at raise time in Cactus corre-
sponds to the extraction of context information from join-
points (e.g., arguments, target, this) through pointcut prim-
itives in AOP frameworks. However, even in this case, there
is usually no way to specify that some particular informa-
tion not available in the joinpoint context should be directly
passed to an advice. If an aspect needs additional informa-
tion to be collected, this can be solved by inserting addi-
tional attributes to the impacted objects (assuming an OO
environment), and using context information to access it.

The passing of bind arguments in Cactus corresponds to
parameterization of aspects at weaving/deployment time.
This feature is usually only supported by AO systems that
make a clear distinction between aspects and their bind-
ing to a base program. AO systems that support aspect
parameterization typically either support explicit aspect in-
stantiation such as CaesarJ [32], the passing of arguments
to pointcuts such as JAC [34] and AspectJ2EE [9], or have
template-like facilities such as the configuration scripts in
JBoss [7].

4.5 Dynamic reconfiguration
The ability to bind and unbind handlers at runtime has

proven to be useful in many micro-protocols. Activating
and deactivating micro-protocols in this way is a natural
mechanism for implementing adaptive services, that is, ser-
vices that change their behavior at runtime based on changes

in the application requirements or the runtime environment
[23]. Such a mechanism is also useful for many non-adaptive
services, since many protocols and services have distinct ex-
ecution phases (initialization, normal execution, failure han-
dling, shutdown) where different behaviors implemented by
different handlers may be useful.

Dynamic binding and unbinding of handlers is similar to
the dynamic deployment and removal of aspects [35, 7, 32,
36, 34]. There is, however, a difference between (i) ap-
proaches that use dynamic weaving and can dynamically
deploy aspects using pointcuts that were unplanned when
the base program was compiled (e.g., [34, 7]), and (ii) ap-
proaches that statically insert hooks for pointcuts known
in advance, but allow for the corresponding aspect to be
dynamically deployed on these pointcuts (e.g., [32]). The
Cactus model is very close to the latter since the join-
points are defined by the points at which events are raised
in the code, while the set of handlers (advices) to be exe-
cuted at each event occurrence can change at runtime when
micro-protocols bind and unbind their handlers. Addition-
ally, however, Cactus allows new micro-protocol code to be
loaded into a running protocol (e.g., using dynamic libraries
in C or dynamic class loaders in Java), and these new micro-
protocols may create new events and raise these new events
at runtime.

A complication resulting from such flexibility is that event
handling semantics must be well-defined when handlers are
being bound and unbound at the same time events are being
raised. Timed events in particular can be raised long before
the corresponding handlers are executed, increasing the time
span any synchronization must cover. While the Cactus
execution model ensures that the execution of each event
handler individually is atomic, the collective execution of
all the handlers bound to an event is not. Therefore, it
is possible that a handler can be unbound after the event
is raised, but before this event handler has been executed.
To address this issue, Cactus determines the set of handlers
to be executed when the event is raised and executes this
set even if the bindings have subsequently changed. This
approach minimizes interference between concurrent micro-
protocols and has proven to be a sound basis for supporting
composition.

While the ability to activate and deactivate micro-proto-
cols at runtime is necessary for building adaptive services,
it is often not sufficient. For example, coordination is of-
ten required (i) locally between composite protocols across
different system layers (inter-layer coordination), and (ii)
globally between peer composite protocols located on differ-
ent hosts (inter-host coordination) [8]. Inter-layer coordina-
tion is required to ensure that different adaptive protocols in
the same protocol stack do not perform conflicting adapta-
tions or overadapt by each reacting to the same change. An
example where such coordination is needed is when video
is transmitted over a wireless network and the underlying
transport protocol can adapt to network losses by introduc-
ing redundancy in the transmission in the form of forward
error correction. As a result, the video application has to
adapt the amount of video data it sends per time unit, since
less bandwidth is available for the video data.

Inter-host coordination, on the other hand, is required
to ensure that peer protocols can understand one another’s
messages. For example, if one peer adapts to a suspected
security threat by starting to encrypt messages, it is ob-

vious that its peers must also adapt so they can decrypt
the message body using the correct key. We have explored
distributed adaptation coordination algorithms that allow
underlying composite protocols to adapt transparently to
higher-level services and applications [8].

4.6 Ordering of advices
When more than one handler is bound to the same event,

the order in which they are executed may be important.
This became obvious in an early implementation of the
event-driven execution model in which handlers were simply
executed in the order they happened to bind to the event.
The result was that programmers ended up manipulating
the order in which micro-protocols were initialized in order
to provide some sort of explicit ordering between handlers.
In addition to being ad hoc, this approach lacks flexibility
since it enforces the same order for all events.

In Cactus, explicit handler ordering is enabled by allowing
the programmer to specify an order argument in the bind
operation:

event.bind(handler,static arguments, order);

This argument is simply an integer value that is used by
the runtime system to order handler execution in the obvi-
ous way. While sufficient, this approach has proven to be
somewhat difficult to use in practice since it requires pro-
grammers to keep track of which integers have been used by
which micro-protocols for each event. We are exploring bet-
ter options, including specifying just the required ordering
constraints (e.g., “handler h1 of micro-protocol m1 has to be
executed before handler h2 of micro-protocol m2 for event
e1”) and then having the system generate an order that sat-
isfies these constraints for all the micro-protocols that are
included in a given service configuration.

A number of solutions for aspect ordering has been pro-
posed, and the different approaches explored in Cactus have
their counterparts in AOSD frameworks. For example, or-
dering based on aspect instantiation is used in CaesarJ [32].
Somewhat more flexible are priorities in PROSE, which de-
couple the initialization order from the aspect order [36].
A mechanism similar to Cactus is supported only by a few
frameworks, since it requires the ability to specify orders be-
tween advices at the pointcut level and an explicit notion of
binding. For example, JBoss permits advice ordering per
pointcut with the <stack> construct [7]. JAsCO has a sim-
ilar functionality based on hooks and connectors [43].

4.7 Relations between aspects
While the work on AOP has traditionally focused on indi-

vidual aspects, the configurable services implemented using
Cactus have large numbers of micro-protocols that are de-
signed to operate together in different combinations. It is
obvious that all combinations are not possible. For exam-
ple, the fundamental properties provided by different micro-
protocols might be in conflict (e.g., FIFO order vs. imme-
diate delivery of “important” messages). In other cases, the
combination might be logically appropriate, but the imple-
mentations of the micro-protocols might be incompatible.
To address these issues, we have defined a set of relations be-
tween micro-protocols (independence, dependence, conflict)
that describe the compatibility between micro-protocols.
We have also developed a configuration support tool that
enforces these constraints [21].

Many AOP platforms provide some more or less direct
means of enforcing dependencies and incompatibilities be-
tween aspects. JAC for instance provides a composition
aspect that can be configured to encapsulate such relation-
ships. To our knowledge, however, only JAsCO and EAOP
directly support the ability to specify inter-aspects relation-
ships in a declarative manner. For example, EAOP allows
one to specify that an aspect X should only be applied at a
joinpoint if another aspect Y has been applied at the same
joinpoint [30]. Only JAsCO offers an exclude operator.

As aspects grow in popularity, the importance of reusable
aspect libraries is expected to grow and we expect the ability
to declare relations such as exclusion or dependency between
aspects will become increasingly important.

4.8 Joinpoints as first class objects
As discussed above in the context of timed events (sec-

tion 4.3), the ability to manipulate events as first class enti-
ties allows the implementation of complex time-driven con-
trol flows in Cactus. Unlike events, traditional joinpoints are
not first-class entities and thus do not support this kind of
treatment. They cannot be created, deleted, stored in data
structures, or passed as arguments. AO frameworks such as
AspectJ, CaesarJ, PROSE, and JAsCO [34, 32, 43, 36,
27]) have special reflective elements such as thisJoinpoint in
AspectJ or Invocation in JBoss that represent joinpoints
at runtime. However, these mechanisms only provide ob-
servation capacities. Joinpoints cannot be instantiated, and
they usually cannot be forwarded or morphed into a differ-
ent joinpoint type.

Treating joinpoints as first class entities (i.e., that can
be “thrown” or “raised” explicitly) would actually reflect
some of the strategies used to implement aspects. In Prose
[36], for instance, a lower layer observes the base program
and generates joinpoint occurrences accordingly. These join-
point instances are then consumed by a higher level to ac-
tivate the appropriate advices, in a way similar to event
handlers in Cactus.

4.9 Instance specific aspects
In communication protocols, a distinction is often made

between a protocol, which provides the procedures and data
structures for interaction, and a session, which is an instan-
tiation of the protocol used to create a logical connection
between communicating peer protocols. From an object-
oriented point of view, the protocol can be viewed as a class
while the session is an instance of this class. Often, multiple
sessions are created using the same protocol, for example,
to form connections to different communication partners or
connections for different purposes between the same parties
(e.g., a control channel and a data channel for transmitting
streaming video). In many cases, the requirements for the
different sessions are also often different.

Cactus allows different sessions of the same configurable
protocol to have different properties by activating differ-
ent sets of micro-protocols for each session. For example,
a video application that uses our Configurable Transport
Protocol (CTP) (see figure 3) could open two separate ses-
sions, one for use as a control control and the other for use as
a data channel. The control channel might have reliability
and FIFO ordering micro-protocols, but without congestion,
flow, or jitter control. The data channel, on the other hand,
might have micro-protocols for rate-based congestion con-

trol and encryption-based privacy, but without reliability
and ordering [46].

In AO terms, this ability to have sessions with different
properties would roughly correspond to instance-local as-
pects such as introduced in the Steamloom system [5].

5. CACTUS EXAMPLES
Here, we describe two concrete Cactus services as a way

to illustrate the lessons from the previous section. The first
is a service that allows QoS attributes related to fault tol-
erance, timeliness, and security to be customized for dis-
tributed object platforms, while the second is a communi-
cation channel abstraction that provides dependability and
real-time guarantees. A similar discussion could be derived
from virtually any of the many Cactus services that have
been implemented.

5.1 QoS for CORBA and Java RMI
Cactus has been used to enhance existing application-level

CORBA and Java RMI services by imposing a QoS ser-
vice, called CQoS, between the client and the middleware
(CORBA ORB or Java RMI), and between the middleware
and the application-level server implementation [18]. CQoS
is transparent to both the client and server and no modi-
fications are required in either the client or server code, or
in the IDL description of the server interface. This trans-
parency is achieved by replacing the original stubs generated
by the CORBA and Java RMI tools with custom generated
stubs that include Cactus composite protocols (called Cac-
tusClient and CactusServer, respectively) that are invoked
when the requests and replies pass through the CQoS stubs
(see figure 5). Note that the same CactusClient and Cac-
tusServer composite protocols work for both CORBA and
Java RMI, with just the stubs being different for these dif-
ferent middleware platforms.

Server ApplicationClient Application

Cactus
Serverstub

CQoSCQoS

Middleware

CQoS

Figure 5: Customizing QoS with CQoS.

The set of events used in this Cactus service reflects the
flow of requests and replies through the client and server side
composite protocols. For example, when the client issues
a new request, the client-side stub invokes CactusClient,
which raises the newRequest event. Similarly, on the server
side, the CactusServer raises the newServerRequest event
when the server-side stub notifies it of the new request.
Other events on the client side include readyToSend, which
indicates that a request is ready to be sent to server(s), and
invokeSuccess and invokeFailure, which indicate that an invo-
cation completed successfully or failed, respectively. Other
events on the server side include readyToInvoke and invok-
eReturn, which indicate that an invocation is ready to be
passed to the servant and that an invocation has completed,
respectively, and RequestReturned, which indicates that a
reply to the client request has been sent to the client.

The micro-protocols in this service include ClientBase

and ServerBase that implement the base functionality of
passing the requests and replies through the composite pro-
tocols at the client and server sides, respectively. Each
consists of three handlers. Other optional micro-protocols
provide enhancements to the service QoS. For fault toler-
ance properties, ActiveRep and PassiveRep micro-protocols
implement active and passive (primary-backup) type repli-
cation of the request to multiple servers to mask server
crash failures, MajorityVote implements voting to deal with
server value failures, and TotalOrder ensures requests from
multiple concurrent clients are processed at the same order
at different replicas. For security properties, the services
includes micro-protocols for privacy (DES encryption of re-
quest and replies), integrity (MD5 checksums), and access
control based on access control lists. Finally, for timeliness
properties, the service includes a scheduling micro-protocol
that maintains separate request queues for low and high
priority requests and for throttling the number of concur-
rently active low priority requests. Note that while such a
timeliness micro-protocol cannot ensure that (soft or hard)
deadlines can be met, it can provide service differentiation
between low and high priority requests.

This service uses many of the features outlined in the pre-
vious section. First, ordering of handlers for each event is
critical to weave the micro-protocol functionality properly
at each event. For example, it can be important that some
handler is executed as the last one or the first one for a par-
ticular event. Static arguments are used extensively by the
ActiveRep micro-protocol by binding a given handler once
for each server replica with the server id as the static argu-
ment. Although this protocol does not use delayed events,
it uses asynchronous (non-blocking) raise for the RequestRe-
turned event.

5.2 Real-Time Dependable (RTD) channels
Cactus has also been used to implement services with

(hard) real-time attributes. These implementations natu-
rally rely on the underlying operating system supporting
real-time scheduling and resource allocation, in our case the
Open Group/RI MK 7.3 Mach real-time operating system.
The RTD (Real-Time Dependable) Channel is an example
of such a service [24, 12]. An RTD Channel can be cus-
tomized along a number of dimensions, including the com-
munication topology (ranging from point-to-point unidirec-
tional communication to many-to-many group communica-
tion), the reliability of message transmission, message order-
ing properties, and the real-time deadlines associated with
message transmission along the channel.

While reliability and ordering properties are implemented
as micro-protocols as in any Cactus protocol, the real-time
deadline guarantees have to be implemented by using ad-
mission control, resource allocation, and real-time schedul-
ing provided by the underlying operating system. The ad-
mission control decides if the request for creation of a new
RTD channel can be accepted given the current set of ex-
isting channels in the distributed system and the specific
requirements of the new channel. The resource allocation
component in this case determines the priority for the chan-
nel, which is then used by the OS to schedule the processing
of messages in different channels in the system. The abil-
ity to customize a variety of properties in creating an RTD
channel complicates realization of the real-time aspects of
the service. For example, to implement message deadlines it

must be possible to predict the CPU time required to pro-
cess each message, as well as other resource requirements
such as those related to network bandwidth and memory
usage. The choice of properties affects all these calculations
since the choice of micro-protocols impacts the number of
messages sent and processed by the channel (e.g., acknowl-
edgment messages), which again affects timeliness. The de-
tails of the admission control and resource allocation can be
found in [12].

The set of events used by the composite protocol consists
mostly of events related to message arrival from (and de-
livery to) the application and the network. However, this
protocol uses separate events for the arrival of real-time
data messages, non real-time data messages, and control
messages. These specialized events are raised by the base
micro-protocol based on the message header fields, and they
allow the other micro-protocols to be notified only when a
relevant message has arrived.

The RTD Channel composite protocol includes a base
micro-protocol, two alternative micro-protocols for message
reliability, three for message ordering, and one to force out of
order message delivery. For reliability, the micro-protocols
are MulReliable that sends each message multiple times
over the network and AckReliable that uses positive ac-
knowledgments, i.e., transmits a message repeatedly until
an acknowledgment is received from the destination. For or-
dering, the micro-protocols are FifoOrder that uses sender
assigned sequence numbers to deliver messages in the same
order they were sent, CausalOrder that preserves causal-
ity in message delivery,1 and TotalOrder that ensures all
messages are received in the same order on all destinations.
Finally, the ForceUp micro-protocol forces the delivery of
a message out of order if its deadline would otherwise be
missed because earlier messages in the specified order are
missing (and thus, preventing its in-order delivery).

This protocol uses a number of the features discussed in
section 5. Specifically, is relies on handler ordering exten-
sively, it defines semantic joinpoints (the message specific
events), uses timed events (for AckReliable and ForceUp),
and it relies on session specific configurations of micro-
protocols (each channel instance is a separate session of the
same RTD Channel protocol). Finally, some of the micro-
protocols have relations that dictate their configuration con-
straints; for example, certain ordering protocols can only be
used with specific channel topologies.

6. DISCUSSION

6.1 Comparison
Based on the two Cactus examples and the features pre-

sented in section 4, we discuss some of the more fundamental
differences between Cactus and AO environments. One such
difference is that aspects tend to be much more generic, that
is, they can be applied to different systems or classes, while
micro-protocols are typically specific to the composite pro-
tocol implementing a service. Some of the reasons for the
specificity are “syntactic” in the sense that micro-protocols
are designed to operate with a certain set of events (event
names), and assume certain shared data structures and type

1If the sending of message m2 was potentially caused by the
reception of message m1, then m1 is delivered before m2 at
all destinations.

definitions for the messages processed by the service. Other
reasons are more fundamental in nature. For example, the
way in which reliability is implemented differs depending on
whether the service provides unidirectional message streams
(e.g., streaming video) or a request-reply paradigm (e.g., re-
mote procedure call). The AO approach, where pointcuts
are specified separately from the aspects either using ab-
stract pointcuts or through an explicit binding mechanism,
could be applied to Cactus to make micro-protocols more
portable by eliminating the need to encode specific event
names. As illustrated by the example in figure 4, this can
already be partly achieved by passing event names as argu-
ments to micro-protocols.

Another major difference is naturally that Cactus requires
raise operations (joinpoint shadows) and event types (point-
cuts) to be programmed explicitly into the code they cross-
cut, whereas almost all AOP languages provide quantifica-
tion mechanisms (pointcut description languages) to specify
joinpoint sets with no modification of the base program.
The trend towards annotation-based aspects (section 4.1)
suggests that the type of functionality provided by the Cac-
tus approach is also useful in an AOP context. The value
is especially clear in cases where “implicit” pointcuts (i.e.,
limited to the properties of programmatic entities) are not
desirable or even possible.

Conversely, implicit event reification could be useful in
Cactus. For example, a non-trivial number of events in
a typical composite protocol are associated with messages
or service requests arriving and leaving the protocol. Such
standardized “events” could be reified transparently in the
same way as AO joinpoints. Adopting AO techniques to ex-
tract events from an existing system would also remove the
need to attach Cactus manually to the stubs or proxies that
wrap a service, thus easing the direct application of Cactus
to existing programs.

At the level of the composition mechanisms, Cactus is
closer to multi-dimensional separation of concerns [45] than
to traditional aspect orientation. Cactus does not explic-
itly distinguish between a “base program” and cross-cutting
entities (aspects). Instead, Cactus services are constructed
purely out of micro-protocols. However, in practice, Cac-
tus protocols tend to be structured around a “base” micro-
protocol that implements the core service functionality and
is required in each configuration of the system. Cactus has
also been used to enhance existing services by attaching
composite protocols to an existing service stack [18, 19].
Both strategies, although unrelated to the Cactus composi-
tion model, are strongly reminiscent of the base/meta sepa-
ration found in standard AO systems.

Finally, note that, although the event-based weaving of
Cactus differs from most AO platforms, the underlying
mechanisms are in fact very similar. For instance, we have
done work on weaving the handlers “permanently” by in-
lining the handler code at the event raise sites when dynamic
profiling shows that the set of handlers for an event raise site
remains invariant [37]. If the handler binding for the opti-
mized raise site changes, the optimized code falls back to
the normal event handling procedure. Such optimization
improves the performance of a customizable service, but for
only one configuration of the service at a time.

6.2 Issues in QoS composability
While encapsulating simple concerns such as logging or

debugging into reusable aspects or micro-protocols is easy,
factoring out “systemic” QoS attributes such as reliability,
security, or timeliness by the same means can be much more
challenging. Hard real time is perhaps the best example of a
guarantee that cannot simply be provided by a single “real-
time” micro-protocol. Limited enhancement of some soft
timeliness properties is possible by having micro-protocols
manipulate thread priorities and order messages or requests
based on deadline information. Rigorous hard real-time
guarantees cannot, however, be achieved without taking into
consideration the complete protocol stack and indeed, the
entire system. This is required to derive predictable exe-
cution times and manage resource allocation appropriately.
The use of a configurable micro-protocol framework, where
each micro-protocol might or might be not activated, makes
this especially difficult. In particular, each configuration of
the service typically has different CPU requirements, differ-
ent resource needs, and different worst case execution times.

We have addressed some of these issues in a real-time
version of Cactus [24] and in the RTD Channel service de-
scribed in section 5.2. We had to solve two main problems.
First, for communication services, the service configuration
not only dictates the processing time per message, but also
has an impact on the number of messages sent and received.
For example, a reliability property may require message re-
transmissions. Second, the problem is further complicated
by the fact that the number of messages often depends on
the number of communication participants. We addressed
these issues by adding a service-specific Admission Control
module that encapsulates all required resource calculations
and then makes a resource reservation for the specific ser-
vice configuration. This allows the configurability of a ser-
vice implemented with the micro-protocol framework to be
separated from global system resource allocation issues.

Security properties such as communication security and
access control are similar to real-time properties to the ex-
tent that simply adding an encryption (or access control)
micro-protocol does not necessarily make the whole system
secure. Such micro-protocols can only strengthen a part of
the system and may leave other vulnerabilities open that al-
low a security breach. Implementing security mechanisms
as separate micro-protocols is, however, far easier than hard
real-time properties. For example, we have built a config-
urable secure communication service called SecComm, in
which each security property, including privacy, integrity,
authenticity, non-repudiation, and replay prevention, can be
provided by a choice of micro-protocols or combinations of
micro-protocols [25]. The challenges include the fact that
different security transformations have a number of depen-
dencies and ordering constraints, and that the level of secu-
rity achievable by using multiple cryptographic methods is
still an unsolved problem.

In contrast to real time and security, our experience has
been that fault-tolerance properties are relatively easy to re-
alize as independent micro-protocols. For example, replica-
tion or retransmission micro-protocols can be implemented
to add tolerance to host and communication failures. Often,
it is necessary to hide the effects of such techniques, namely
multiple replies and duplicate messages, from the applica-
tion and maybe even other micro-protocols. This is easy
to do by adding a voting or duplicate elimination micro-
protocol.

Finally, we do not see any fundamental impossibility

in providing combinations of fault-tolerance, security, and
timeliness attributes. As illustrated in this paper, some of
the Cactus services in fact provide various subsets of these
attributes. The attributes naturally have an impact on one
another, as illustrated by how the reliability properties im-
pact timeliness in the RTD Channel service. Similarly, se-
curity attributes implemented using cryptography have an
impact on CPU utilization (per message) and thus, the dead-
line guarantees. It is often argued that the redundancy used
to provide fault tolerance makes the system less secure by
introducing more vulnerable points into the system (e.g.,
copies of the same file on multiple computers), but prior
work has shown that this does not need to be the case if
security and redundancy are designed jointly [13].

6.3 Related work on configurable protocols
In this section, we describe other approaches to construct-

ing configurable system-level software (e.g., protocol stacks,
databases), and, where possible, contrast them with AO con-
cepts.

Layered approaches. These approaches are oriented to-
wards constructing systems as a stack or directed graph of
modules, where each module typically interacts only with
modules immediately above and below it in the hierarchy.
Examples of this approach include the x-kernel [26], Ho-
rus [39], the Genesis database system [3], and stackable file
systems [20]. Some of the approaches require that all mod-
ules export an identical interface, e.g., x-kernel, while oth-
ers allow layer-specific interfaces, e.g., Genesis. Layered ap-
proaches result from the application of modularization to
the problem of configurability with the goal of organizing
the different building blocks in a manner that is at the
same time flexible (to ease configurability) and principled (to
guarantee good software quality). Hierarchical approaches
are not in this respect particularly related to aspect orien-
tation. Rather, they focus on separation of concerns in that
they encapsulate different features into different modules,
and allow a composite service with configurable properties
to be built as a combination of these modules. Possible
cross-cutting and interference issues are, however, not dealt
with in any generic manner.

Slotted approaches. In these approaches, a customizable
software component is constructed as a fixed system back-
plane with slots that can be filled using a choice of modules
for each slot. An example of this approach is Adaptive [41].
Slotted approaches can be seen as a forerunner of object-
oriented frameworks as defined in [16]. In contrast with a
hierarchical approach, modules in this approach are typi-
cally typed and thus, can only be used in one specific slot.
Similarly, each slot in the system must be filled with a given
type of module, which means that the backplane and each
of the sets of modules depend on one another. In some sys-
tems such as Adaptive, a slot can be filled with a composite
module, which is essentially a smaller backplane with new
slots. ¿From an AO point of view, each slot can be seen as a
pointcut and each module as an aspect. The backplane has
the same role as the base program in an AO system, provid-
ing the structure into which modules are inserted. Slotted
approaches are, of course, far more limited that AO systems,
since slots are decided at design time and must be explicitly
built into the system, unlike pointcuts. The slot-backplane
binding also does not support any notion of quantification.
A slot can only have one module associated with it, un-

like joinpoints that can be targeted by several aspects. The
composite modules alleviate this limitation to some extent
by allowing a level of recursion, i.e., in AO terms, by allow-
ing one or more aspects to be attached to an aspect rather
than to a base program.

Class hierarchy based approaches. In these approaches,
the mechanisms for constructing a customized software com-
ponent are presented to users as an object class hierarchy.
A predefined class hierarchy specifies the available compo-
nents, which can then be manipulated by invoking the object
methods. New classes can be defined as derived classes of
existing ones. Examples of this approach are Arjuna [42]
and the configurable mixed-media file system described in
[31]. While these approaches do not support joinpoints or
weaving, the modules take advantage of inheritance and sub-
typing similar to object-oriented AOP languages.

Interception- and reflection-based approaches. These
approaches typically rely on a distributed object model in
which distributed objects communicate with each other by
message passing and in which interception is used to con-
figure message communication paths transparently to the
application [1]. Interception-based systems have given rise
to full-fledged reflective infrastructures that have been used
to add non-functional features such as fault-tolerance (repli-
cation) and security (encryption, authentication) transpar-
ently to existing distributed applications [17, 1, 29]. Message
processing events (sending, reception) here are comparable
to the joinpoints of an AOP framework. There is, however,
no explicit notion of pointcuts, and if needed, quantification
must be implemented using reflective capabilities to decide,
for instance, whether a message needs to be intercepted.
These approaches go much further that the previous ones
by allowing a true cross-cutting (1-n) composition between
non-functional mechanisms and the base system.

Reflective approaches have been further refined to ad-
dress middleware architectures. For example, multi-layer
reflection has been proposed to overcome the complexity of
modern distributed platforms [44] (i.e., the thickness of soft-
ware). Reflective component-based middleware frameworks
such as OpenCOM have also been proposed to address is-
sues related to heterogeneity, adaptivity, and dynamic re-
configuration.

7. CONCLUSIONS
As AOSD gains in popularity, AO concepts are being

applied to an ever-increasing range of domains from dis-
tributed computing to component-based software develop-
ment. In this paper, we have shown how the Cactus system,
which is oriented towards building configurable communica-
tion and middleware services, shares many design principles
with AOSD systems. Based on our experience with Cactus
and the customizable services that have been implemented
using the system, we highlighted a number of useful fea-
tures that are derived from its micro-protocol architecture
and event-based execution model. While some of these fea-
tures have counterparts in AO platforms, others are notably
absent. We hope that our experiences will encourage the
use, and introduction when needed, of these features into
AOSD as the area continues to evolve to address issues in
domains more traditionally associated with protocol frame-
works such as Cactus.

Acknowledgments
The authors would like to thank F. Jahanian for pointing
out the similarities between Cactus and aspect-oriented pro-
gramming, and A. Rashid for his comprehensive overview of
the area. Täıani has been supported in part by EPSRC
project EP/C010345/1 “The Divergent Grid”.

8. REFERENCES
[1] G. Agha, S. Frolund, R. Panwar, and D. Sturman. A

linguistic framework for dynamic composition of
dependability protocols. In Proc. Dependable Comp.
for Critical Applications (DCCA), pages 197–207,
1992.

[2] R. Ȧlberg, J. Lawall, M. Südholt, G. Muller, and
A.-F. L. Meur. On the automatic evolution of an OS
kernel using temporal logic and AOP. In Proc.
Automated Software Engineering (ASE), pages
196–204, Oct 2003.

[3] D. Batory, J. Barnett, J. Garza, K. Smith,
K. Tsukuda, B. Twichell, and T. Wise. GENESIS: An
extensible database management system. IEEE Trans.
on Software Engineering, SE-14(11):1711–1729, Nov
1988.

[4] N. Bhatti, M. Hiltunen, R. Schlichting, and W. Chiu.
Coyote: A system for constructing fine-grain
configurable communication services. ACM Trans. on
Computer Systems, 16(4):321–366, Nov 1998.

[5] C. Bockisch, M. Haupt, M. Mezini, and
K. Ostermann. Virtual machine support for dynamic
join points. In Proc. Aspect-Oriented Software
Development (AOSD), pages 83–92, Mar 2004.

[6] J. Brichau and M. H. (editors). Survey of
aspect-oriented languages and execution models. Tech.
Rep. AOSD-Europe-VUB-01, AOSD-Europe, May
2005.

[7] B. Burke and M. Fleury. A killer app for AOP. Linux
Magazine, 6(6):32, Jun 2004.

[8] W.-K. Chen, M. Hiltunen, and R. Schlichting.
Constructing adaptive software in distributed systems.
In Proc. Distributed Computing Systems (ICDCS),
pages 635–643, Apr 2001.

[9] T. Cohen and J. Gil. AspectJ2EE = AOP + J2EE:
Towards an aspect based, programmable and
extensible middleware framework. In Proc. European
Conf. on Object-Oriented Programming (ECOOP),
pages 219–243, 2004.

[10] A. Colyer. AOP@Work: Introducing AspectJ 5.
http://www.ibm.com/developerworks/java/library/-
j-aopwork8,Jul 2005.

[11] T. Cottenier and T. Elrad. Contextual pointcut
expressions for dynamic service customization. In
Proc. Dynamic Aspects Workshop (DAW), pages
95–99, Mar 2005.

[12] R. Das, M. Hiltunen, and R. Schlichting. Supporting
configurability and real time in RTD channels.
Software: Practice and Experience, 31(12):1183–1209,
Oct 2001.

[13] Y. Deswarte, J.-C. Fabre, J.-M. Fray, D. Powell, and
P.-G. Ranea. Saturne: A distributed computing
system which tolerates faults and intrusions. In Proc.
Workshop on Future Trends of Distributed Computing
Systems in the 1990’s, pages 329–338, Sep 1988.

[14] R. Douence, P. Fradet, and M. Südholt. Composition,
reuse and interaction analysis of stateful aspects. In
Proc. Aspect-Oriented Software Development (AOSD),
pages 141–150, Mar 2004.

[15] R. Filman, T. Elrad, S. Clarke, and M. Aksit.
Aspect-Oriented Software Development. Addison
Wesley, 2004.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison-Wesley, 1995.

[17] B. Garbinato, R. Guerraoui, and K. Mazouni.
Implementation of the GARF replicated objects
platform. Distributed Systems Engineering Journal,
2(1):14–27, 1995.

[18] J. He, M. Hiltunen, M. Rajagopalan, and
R. Schlichting. QoS customization in distributed
object systems. Software: Practice and Experience,
(33):295–320, 2003.

[19] J. He, M. Hiltunen, and R. Schlichting. Customizing
dependability attributes for mobile service platforms.
In Proc. Dependable Systems and Networks (DSN),
pages 617–626, Jun 2004.

[20] J. Heidemann and G. Popek. Performance of cache
coherence in stackable filing. In Proc. Symp. on
Operating Systems Principles (SOSP), pages 127–142,
Dec 1995.

[21] M. Hiltunen. Configuration management for
highly-customizable software. IEE Proceedings:
Software, 145(5):180–188, Oct 1998.

[22] M. Hiltunen and R. Schlichting. An approach to
constructing modular fault-tolerant protocols. In Proc.
Symp. on Reliable Distributed Systems (SRDS), pages
105–114, Oct 1993.

[23] M. Hiltunen and R. Schlichting. A model for adaptive
fault-tolerant systems. In K. Echtle, D. Hammer, and
D. Powell, eds, Proc. European Dependable Computing
Conf. (EDCC) (LNCS 852), pages 3–20, Oct 1994.

[24] M. Hiltunen, R. Schlichting, X. Han, M. Cardozo, and
R. Das. Real-time dependable channels: Customizing
QoS attributes for distributed systems. IEEE Trans.
on Parallel and Distributed Systems, 10(6):600–612,
Jun 1999.

[25] M. Hiltunen, R. Schlichting, and C. Ugarte.
Enhancing survivability of security services using
redundancy. In Proc. Dependable Systems and
Networks (DSN), pages 173–182, Jul 2001.

[26] N. Hutchinson and L. Peterson. The x-kernel: An
architecture for implementing network protocols.
IEEE Trans. on Software Engineering, 17(1):64–76,
Jan 1991.

[27] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. Griswold. An overview of AspectJ. In
Proc. European Conf. on Object-Oriented
Programming (ECOOP), pages 327–353, 2001.

[28] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-
oriented programming. In Proc. European Conf. on
Object-Oriented Programming (ECOOP) (LNCS
1241), pages 220–242, Jun 1997.

[29] M. Killijian, J. Fabre, J. Ruiz-Garćıa, and S. Shiba. A
metaobject protocol for fault-tolerant CORBA
applications. In Proc. Symp. on Reliable Distributed
Systems (SRDS), pages 127–134, 1998.

[30] N. Loughran, N. Parlavantzas, M. Pinto, L. F.
Fernández, P. Sánchez, M. Webster, and A. Colyer.
Survey of aspect-oriented middleware. Tech. Rep.
AOSD-Europe-ULANC-10, AOSD-Europe, Jun 2005.

[31] S. Maffeis. Design and implementation of a
configurable mixed-media file system. Operating
Systems Review, 28(4):4–10, Oct 1994.

[32] M. Mezini and K. Ostermann. Conquering aspects
with Caesar. In Proc. Aspect-Oriented Software
Development (AOSD), pages 90–100, 2003.

[33] S. Mishra, L. Peterson, and R. Schlichting. Experience
with modularity in Consul. Software Practice &
Experience, 23(10):1059–1075, Oct 1993.

[34] R. Pawlak, L. Seinturier, L. Duchien, G. Florin,
F. Legond-Aubry, and L. Martelli. JAC: an
aspect-based distributed dynamic framework.
Software: Practice and Experence, 34(12):1119–1148,
2004.

[35] M. Pinto, L. Fuentes, and J. Troya. A dynamic
component and aspect-oriented platform. Comput. J.,
48(4):401–420, 2005.

[36] A. Popovici, T. Gross, and G. Alonso. Dynamic
weaving for aspect-oriented programming. In Proc.
Aspect-Oriented Software Development (AOSD), pages
141–147, 2002.

[37] M. Rajagopalan, S. Debray, M. Hiltunen, and
R. Schlichting. Profile-directed optimization of
event-based programs. In Proc. Programming
Language Design and Implementation (PLDI), pages
106–116, Jun 2002.

[38] R. v. Renesse, K. Birman, M. Hayden, A. Vaysburd,
and D. Karr. Building adaptive systems using
Ensemble. Software: Practice and Experience,
28(9):963–979, Jul 1998.

[39] R. v. Renesse, K. Birman, and S. Maffeis. Horus, a
flexible group communication system. Comm. of the
ACM, 39(4):76–83, Apr 1996.

[40] D. M. Ritchie. A stream input-output system. AT&T
Bell Labs Technical Journal, 63(8):311–324, Oct 1984.

[41] D. Schmidt, D. Box, and T. Suda. ADAPTIVE: A
dynamically assembled protocol transformation,
integration, and evaluation environment. Concurrency:
Practice and Experience, 5(4):269–286, Jun 1993.

[42] S. Shrivastava, G. Dixon, and G. Parrington. An
overview of the Arjuna distributed programming
system. IEEE Software, 8(1):66–73, Jan 1991.

[43] D. Suvée, W. Vanderperren, and V. Jonckers. JAsCo:
an aspect-oriented approach tailored for component
based software development. In Proc. Aspect-Oriented
Software Development (AOSD), pages 21–29, 2003.

[44] F. Täıani, J.-C. Fabre, and M.-O. Killijian. Towards
implementing multi-layer reflection for fault-tolerance.
In Proc. Dependable Systems and Networks (DSN),
pages 435–444, Jun 2003.

[45] P. Tarr, H. Ossher, and J. S. Sutton. Hyper/j:
multi-dimensional separation of concerns for java. In
Proc. Software Engineering, pages 689–690, 2002.

[46] G. Wong, M. Hiltunen, and R. Schlichting. A
configurable and extensible transport protocol. In
Proc. IEEE Communications and Computer Societies
(INFOCOM), pages 319–328, Apr 2001.

